Highly sensitive polymer photodetectors with a wide spectral response range

被引:10
作者
Gao, Mile [1 ]
Wang, Wenbin [1 ]
Li, Lingliang [1 ]
Miao, Jianli [1 ]
Zhang, Fujun [1 ]
机构
[1] Beijing Jiaotong Univ, Key Lab Luminescence & Opt Informat, Minist Educ, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
conducting polymers; photodetectors; photomultiplication; TRAP-ASSISTED PHOTOMULTIPLICATION; NEAR-INFRARED PHOTODETECTORS; ORGANIC PHOTODETECTORS; QUANTUM EFFICIENCY; PHOTODIODES; FULLERENE; ELECTRODE; GAIN;
D O I
10.1088/1674-1056/26/1/018201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A series of highly sensitive polymer photodetectors (PPDs) was fabricated with P3HT(100-x): PBDT-TS1(x): PC71BM1 as the active layers, where x represents the PBDT-TS1 doping weight ratio in donors. The response range of PPDs can cover from the UV to near-infrared regions by adjusting the PBDT-TS1 doping weight ratio. The best external quantum efficiency (EQE) values of ternary PPDs with P3HT: PBDT-TS1: PC71BM (50: 50: 1 wt/wt/wt) as the active layers reach 830%, 720%, and 330% under 390-, 625-, and 760-nm light illumination and 10 V bias, respectively. The large EQE values indicate that the photodetectors utilise photomultiplication (PM). The working mechanism of PM-type PPDs can be attributed to interfacial trap-assisted hole tunnelling injection from the external circuit under light illumination. The calculated optical field and photogenerated electron volume density in the active layers can well explain the EQE spectral shape as a function of the PBDT-TS1 doping weight ratio in donors.
引用
收藏
页数:7
相关论文
共 28 条
[1]   Accounting for Interference, Scattering, and Electrode Absorption to Make Accurate Internal Quantum Efficiency Measurements in Organic and Other Thin Solar Cells [J].
Burkhard, George F. ;
Hoke, Eric T. ;
McGehee, Michael D. .
ADVANCED MATERIALS, 2010, 22 (30) :3293-+
[2]   Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene [J].
Chen, Hsiang-Yu ;
Lo, Michael K. F. ;
Yang, Guanwen ;
Monbouquette, Harold G. ;
Yang, Yang .
NATURE NANOTECHNOLOGY, 2008, 3 (09) :543-547
[3]   High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm [J].
Gong, Xiong ;
Tong, Minghong ;
Xia, Yangjun ;
Cai, Wanzhu ;
Moon, Ji Sun ;
Cao, Yong ;
Yu, Gang ;
Shieh, Chan-Long ;
Nilsson, Boo ;
Heeger, Alan J. .
SCIENCE, 2009, 325 (5948) :1665-1667
[4]  
Guo FW, 2012, NAT NANOTECHNOL, V7, P798, DOI [10.1038/nnano.2012.187, 10.1038/NNANO.2012.187]
[5]  
Guo JC, 2009, CHINESE PHYS B, V18, P2223, DOI 10.1088/1674-1056/18/6/020
[6]   Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection [J].
Hayden, O ;
Agarwal, R ;
Lieber, CM .
NATURE MATERIALS, 2006, 5 (05) :352-356
[7]   PHOTOCURRENT MULTIPLICATION IN ORGANIC PIGMENT FILMS [J].
HIRAMOTO, M ;
IMAHIGASHI, T ;
YOKOYAMA, M .
APPLIED PHYSICS LETTERS, 1994, 64 (02) :187-189
[8]   The Dependence of Device Dark Current on the Active-Layer Morphology of Solution-Processed Organic Photodetectors [J].
Keivanidis, Panagiotis E. ;
Ho, Peter K. H. ;
Friend, Richard H. ;
Greenham, Neil C. .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (22) :3895-3903
[9]   Exciton binding energies in organic semiconductors [J].
Knupfer, M .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2003, 77 (05) :623-626
[10]   Trap-Assisted Photomultiplication Polymer Photodetectors Obtaining an External Quantum Efficiency of 37500% [J].
Li, Lingliang ;
Zhang, Fujun ;
Wang, Wenbin ;
An, Qiaoshi ;
Wang, Jian ;
Sun, Qianqian ;
Zhang, Miao .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (10) :5890-5897