Effect of environmental conditions on the relationship between solar-induced fluorescence and gross primary productivity at an OzFlux grassland site

被引:159
|
作者
Verma, Manish [1 ,2 ]
Schimel, David [1 ]
Evans, Bradley [3 ]
Frankenberg, Christian [1 ,4 ]
Beringer, Jason [5 ]
Drewry, Darren T. [1 ]
Magney, Troy [1 ]
Marang, Ian [3 ]
Hutley, Lindsay [6 ]
Moore, Caitlin [7 ]
Eldering, Annmarie [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[2] Univ Michigan, Consulting Stat Comp & Anal Res, Ann Arbor, MI USA
[3] Univ Sydney, Fac Agr & Environm, Sch Life & Environm Sci, Sydney, NSW, Australia
[4] CALTECH, Div Geol & Planetary Sci, Pasadena, CA USA
[5] Univ Western Australia, Sch Earth & Environm, Perth, WA, Australia
[6] Charles Darwin Univ, Sch Environm, Darwin, NT, Australia
[7] Monash Univ, Sch Earth Atmosph & Environm, Melbourne, Vic, Australia
基金
澳大利亚研究理事会;
关键词
PHOTOCHEMICAL REFLECTANCE INDEX; INDUCED CHLOROPHYLL FLUORESCENCE; LIGHT-USE EFFICIENCY; DIURNAL CHANGES; WATER-STRESS; CARBON-CYCLE; LEAF; VEGETATION; PRI; CANOPY;
D O I
10.1002/2016JG003580
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recent studies have utilized coarse spatial and temporal resolution remotely sensed solar- induced fluorescence (SIF) for modeling terrestrial gross primary productivity (GPP) at regional scales. Although these studies have demonstrated the potential of SIF, there have been concerns about the ecophysiological basis of the relationship between SIF and GPP in different environmental conditions. Launched in 2014, the Orbiting Carbon Observatory-2 (OCO-2) has enabled fine- scale (1.3 by 2.5 km) retrievals of SIF that are comparable with measurements recorded at eddy covariance towers. In this study, we examine the effect of environmental conditions on the relationship of OCO-2 SIF with tower GPP over the course of a growing season at a well- characterized natural grassland site. Combining OCO-2 SIF and eddy covariance tower data with a canopy radiative transfer and an ecosystem model, we also assess the potential of OCO-2 SIF to constrain the estimates of V-cmax, one of the most important parameters in ecosystem models. Based on the results, we suggest that although environmental conditions play a role in determining the nature of relationship between SIF and GPP, overall, the linear relationship is more robust at ecosystem scale than the theory based on leaf- level processes might suggest. Our study also shows that the ability of SIF to constrain Vcmax is weak at the selected site.
引用
收藏
页码:716 / 733
页数:18
相关论文
共 50 条
  • [1] First Investigation of the Relationship Between Solar-Induced Chlorophyll Fluorescence Observed by TanSat and Gross Primary Productivity
    Du, Shanshan
    Liu, Liangyun
    Liu, Xinjie
    Chen, Jidai
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 11892 - 11902
  • [2] Physiological dynamics dominate the relationship between solar-induced chlorophyll fluorescence and gross primary productivity along the nitrogen gradient in cropland
    Xu, Enxiang
    Zhou, Lei
    Ding, Jianxi
    Zhao, Ning
    Zeng, Linhui
    Zhang, Guoping
    Chi, Yonggang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 929
  • [3] CO2 Concentration, A Critical Factor Influencing the Relationship between Solar-induced Chlorophyll Fluorescence and Gross Primary Productivity
    Qiu, Ruonan
    Han, Ge
    Ma, Xin
    Sha, Zongyao
    Shi, Tianqi
    Xu, Hao
    Zhang, Miao
    REMOTE SENSING, 2020, 12 (09)
  • [4] The relationship between solar-induced fluorescence and gross primary productivity under different growth conditions: global analysis using satellite and biogeochemical model data
    Zhou, Haoran
    Wu, Dun
    Lin, Yi
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (19) : 7660 - 7679
  • [5] Solar-induced chlorophyll fluorescence exhibits a universal relationship with gross primary productivity across a wide variety of biomes
    Xiao, Jingfeng
    Li, Xing
    He, Binbin
    Arain, M. Altaf
    Beringer, Jason
    Desai, Ankur R.
    Emmel, Carmen
    Hollinger, David Y.
    Krasnova, Alisa
    Mammarella, Ivan
    Noe, Steffen M.
    Ortiz, Penelope Serrano
    Rey-Sanchez, Camilo
    Rocha, Adrian V.
    Varlagin, Andrej
    GLOBAL CHANGE BIOLOGY, 2019, 25 (04) : E4 - E6
  • [6] Estimation of Global Terrestrial Gross Primary Productivity Based on Solar-induced Chlorophyll Fluorescence
    Yuan, Yanbin
    Zhang, Chengfang
    Huang, Peng
    Dong, Heng
    Yang, Jinghao
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2022, 53 (04): : 183 - 191
  • [7] Effects of Low Temperature on the Relationship between Solar-Induced Chlorophyll Fluorescence and Gross Primary Productivity across Different Plant Function Types
    Chen, Jidai
    Liu, Xinjie
    Ma, Yan
    Liu, Liangyun
    REMOTE SENSING, 2022, 14 (15)
  • [8] Assessing the Potential for Photochemical Reflectance Index to Improve the Relationship between Solar-Induced Chlorophyll Fluorescence and Gross Primary Productivity in Crop and Soybean
    Chen, Jidai
    Huang, Lizhou
    Zuo, Qinwen
    Shi, Jiasong
    ATMOSPHERE, 2024, 15 (04)
  • [9] Evident influence of water availability on the relationship between solar-induced chlorophyll fluorescence and gross primary productivity in the alpine grasslands of the Tibetan Plateau
    Zheng, Zhoutao
    Cong, Nan
    Zhao, Guang
    Zhao, Bo
    Zhu, Yixuan
    Zhang, Yangjian
    Zhu, Juntao
    Zhang, Tao
    Chen, Ning
    Gao, Jie
    Zhang, Yu
    Sun, Yihan
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 129
  • [10] The Relationship of Gross Primary Productivity with NDVI Rather than Solar-Induced Chlorophyll Fluorescence Is Weakened under the Stress of Drought
    Zhao, Wenhui
    Rong, Yuping
    Zhou, Yangzhen
    Zhang, Yanrong
    Li, Sheng
    Liu, Leizhen
    REMOTE SENSING, 2024, 16 (03)