Random attractor for a damped sine-Gordon equation with white noise

被引:49
作者
Fan, XM [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
[2] Univ Elect Sci & Technol China, Dept Appl Math, Chengdu 610054, Peoples R China
关键词
D O I
10.2140/pjm.2004.216.63
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a compact random attractor for the random dynamical system generated by a damped sine-Gordon with white noise. And we obtain a precise estimate of the upper bound of the Hausdoroff dimension of the random attractor, which decreases as the damping grows and shows that the dimension is uniformly bounded for the damping. In particular, under certain conditions, the dimension is zero.
引用
收藏
页码:63 / 76
页数:14
相关论文
共 10 条
[1]  
Caraballo T, 2000, DISCRET CONTIN DYN S, V6, P875
[2]   A HAUSDORFF DIMENSION ESTIMATE FOR KERNEL SECTIONS OF NONAUTONOMOUS EVOLUTION-EQUATIONS [J].
CHEPYZHOV, V ;
VISHIK, M .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1993, 42 (03) :1057-1076
[3]   Random attractors [J].
Crauel H. ;
Debussche A. ;
Flandoli F. .
Journal of Dynamics and Differential Equations, 1997, 9 (2) :307-341
[4]   ATTRACTORS FOR RANDOM DYNAMICAL-SYSTEMS [J].
CRAUEL, H ;
FLANDOLI, F .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (03) :365-393
[5]  
DAPRATO G, 1992, ENCY MATH ITS APPL, V44
[6]   Hausdorff dimension of a random invariant set [J].
Debussche, A .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (10) :967-988
[7]   On the finite dimensionality of random attractors [J].
Debussche, A .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1997, 15 (04) :473-491
[8]  
GHIDAGLIA JM, 1987, J MATH PURE APPL, V66, P273
[9]  
Pazy A., 1983, APPL MATH SCI, V44
[10]  
Temam R., 1988, APPL MATH SCI, V68