Necrotic Enteritis in Broiler Chickens: The Role of Tight Junctions and Mucosal Immune Responses in Alleviating the Effect of the Disease

被引:55
作者
Emami, Nima K. [1 ]
Calik, Ali [1 ,2 ]
White, Mallory B. [1 ]
Young, Mark [3 ]
Dalloul, Rami A. [1 ]
机构
[1] Virginia Tech, Dept Anim & Poultry Sci, Avian Immunobiol Lab, Blacksburg, VA 24061 USA
[2] Ankara Univ, Fac Vet Med, Dept Anim Nutr & Nutr Dis, TR-06110 Ankara, Turkey
[3] Forage Res Inc, Star Labs, Clarksdale, MO 64430 USA
关键词
necrotic enteritis; performance; lesion score; tight junction; immune response; CLOSTRIDIUM-PERFRINGENS; PREDISPOSING FACTORS; EXPRESSION; INFECTION; BACTERIA; AMPK; SUPPLEMENTATION; PATHOGENESIS; ENTEROTOXIN; MODEL;
D O I
10.3390/microorganisms7080231
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Necrotic enteritis (NE) continues to present major challenges to the poultry industry, and the etiologic agent Clostridium perfringens is the fourth leading cause of bacterially-induced food- borne illnesses in the US. This study was designed to evaluate the effects of a probiotic during naturally occurring NE. On day of hatch, 1080 Cobb 500 male broilers were randomly allocated to three groups (12 replicate pens/treatment, 30 birds/pen) including (1) negative control (NC): corn-soybean meal diet; (2) positive control (PC): NC + 20 mg virginiamycin/kg diet (0.450 kg Stafac (R) 20/ton); and (3) NC + PrimaLac (1.36 and 0.91 kg/ton from 1-21 and 22-42 days, respectively). One day (d) post placement, all birds were challenged by a commercial live oocyst coccidia vaccine as a predisposing factor to NE. Body weight and feed intake were measured at the onset of NE (d 8) and end of each feeding phase. On d 8, small intestines of two birds/pen were examined for NE lesions, and jejunum samples from one bird were collected for mRNA gene expression analysis of tight junction proteins, cytokines, and nutrient transporters. Data were analyzed using the JMP software and significance between treatments identified by LSD (p < 0.05). Compared to NC, supplementation of probiotic reduced d 1-42 mortality; however, PC was the only group with significantly lower mortality. Despite significantly improved feed conversion ratio (FCR) in PC and probiotic groups during d 1-42, average daily gain was only higher in PC (77.69 g/bird) compared with NC (74.99 g/bird). Furthermore, probiotic and PC groups had significantly reduced lesion scores in the duodenum and jejunum compared to NC. Expression of claudin-3 was higher, while expression of zonula occluden-2 tended (p = 0.06) to be higher in probiotic-supplemented birds compared to NC. Moreover, birds fed the probiotic diet had significantly higher expression of IL-10, IL-17, AMPK-alpha 1, and SGLT1 mRNA compared to NC birds. The expression of PepT1 was higher for the probiotic-supplemented group compared to PC. IFN-gamma expression was lower in PC compared to NC, while there was no difference between probiotic and NC. There were no differences in gene expression of sIgA, TNF-alpha, IL-1 beta, and IL-22 among treatments. Collectively, these data indicate that in a naturally occurring NE model, supplementation of a probiotic helps to improve FCR and reduce lesions, potentially due to the improvements in mRNA expression of tight junctions, cytokines, and nutrient transporters.
引用
收藏
页数:14
相关论文
共 50 条
[1]   Microbial shifts associated with necrotic enteritis [J].
Antonissen, Gunther ;
Eeckhaut, Venessa ;
Van Driessche, Karolien ;
Onrust, Lonneke ;
Haesebrouck, Freddy ;
Ducatelle, Richard ;
Moore, Robert J. ;
Van Immerseel, Filip .
AVIAN PATHOLOGY, 2016, 45 (03) :308-312
[2]   AMP-activated protein kinase fortifies epithelial tight junctions during energetic stress via its effector GIV/Girdin [J].
Aznar, Nicolas ;
Patel, Arjun ;
Rohena, Cristina C. ;
Dunkel, Ying ;
Joosen, Linda P. ;
Taupin, Vanessa ;
Kufareva, Irina ;
Farquhar, Marilyn G. ;
Ghosh, Pradipta .
ELIFE, 2016, 5
[3]   AMPK supports growth in Drosophila by regulating muscle activity and nutrient uptake in the gut [J].
Bland, Michelle L. ;
Lee, Robert J. ;
Magallanes, Julie M. ;
Foskett, J. Kevin ;
Birnbaum, Morris J. .
DEVELOPMENTAL BIOLOGY, 2010, 344 (01) :293-303
[4]  
Bremner A., 2018, THESIS U EDINBURGH
[5]   Th17 Cells Are More Protective Than Th1 Cells Against the Intracellular Parasite Trypanosoma cruzi [J].
Cai, Catherine W. ;
Blase, Jennifer R. ;
Zhang, Xiuli ;
Eickhoff, Christopher S. ;
Hoft, Daniel F. .
PLOS PATHOGENS, 2016, 12 (10)
[6]  
Chen YP, 2018, BRIT J NUTR, V119, P1254, DOI [10.1017/s0007114518000740, 10.1017/S0007114518000740]
[7]   IL-10: The master regulator of immunity to infection [J].
Couper, Kevin N. ;
Blount, Daniel G. ;
Riley, Eleanor M. .
JOURNAL OF IMMUNOLOGY, 2008, 180 (09) :5771-5777
[8]   IL-17A promotes protective IgA responses and expression of other potential effectors against the lumen-dwelling enteric parasite Giardia [J].
Dann, Sara M. ;
Manthey, Carolin F. ;
Le, Christine ;
Miyamoto, Yukiko ;
Gima, Lauren ;
Abrahim, Andrew ;
Cao, Anthony T. ;
Hanson, Elaine M. ;
Kolls, Jay K. ;
Raz, Eyal ;
Cong, Yingzi ;
Eckmann, Lars .
EXPERIMENTAL PARASITOLOGY, 2015, 156 :68-78
[9]   Targeting and alteration of tight junctions by bacteria and their virulence factors such as Clostridium perfringens enterotoxin [J].
Eichner, Miriam ;
Protze, Jonas ;
Piontek, Anna ;
Krause, Gerd ;
Piontek, Joerg .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2017, 469 (01) :77-90
[10]   IL-17 and IL-22 in immunity: Driving protection and pathology [J].
Eyerich, Kilian ;
Dimartino, Valentina ;
Cavani, Andrea .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2017, 47 (04) :607-614