Faster solutions of Rabin and Streett games

被引:54
作者
Piterman, Nir [1 ]
Pnueli, Amir [2 ]
机构
[1] Ecole Polytech Fed Lausanne, I&C, MTC, CH-1015 Lausanne, Switzerland
[2] Weizmann Inst Sci, Rehovot, Israel
来源
21ST ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS | 2006年
基金
以色列科学基金会;
关键词
D O I
10.1109/LICS.2006.23
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we improve the complexity of solving Rabin and Streett games to approximately the square root of previous bounds. We introduce direct Rabin and Streett ranking that are a sound and complete way to characterize the winning sets in the respective games. By computing directly and explicitly the ranking we can solve such games in time O(mn(k+1)kk!) and space O(nk) for Rabin and O(nkk!) for Streett where n is the number of states, m the number of transitions, and k the number of pairs in the winning condition. In order to prove completeness of the ranking method we give a recursive fixpoint characterization of the winning regions in these games. We then show that by keeping intermediate values during the fixpoint evaluation, we can solve such games symbolically in time O(n(k+1)k!) and space O(n(k+1)k!). These results improve on the current bounds of O(mn(2k)k!) time in the case of direct (symbolic) solution or O(m(nk(2)k!)(k)) in the case of reduction toparity games.
引用
收藏
页码:275 / +
页数:2
相关论文
共 29 条
[1]  
Björklund H, 2003, LECT NOTES COMPUT SC, V2607, P663
[2]   SOLVING SEQUENTIAL CONDITIONS BY FINITE-STATE STRATEGIES [J].
BUCHI, JR ;
LANDWEBER, LH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 138 (APR) :295-+
[3]  
Bustan D, 2004, LECT NOTES COMPUT SC, V2996, P522
[4]  
CHURCH A, 1963, P 1962 INT C MATH UP, P25
[5]   How much memory is needed to win infinite games? [J].
Dziembowski, S ;
Jurdzinski, M ;
Walukiewicz, I .
12TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 1997, :99-110
[6]  
Emerson E. A., 1988, 29th Annual Symposium on Foundations of Computer Science (IEEE Cat. No.88CH2652-6), P328, DOI 10.1109/SFCS.1988.21949
[7]  
EMERSON EA, 1991, 32 ANN S FDN COMP SC, P368
[8]  
EMERSON EA, 1985, LECTURE NOTES COMPUT, V193, P79
[9]  
EMERSON EA, 1986, 1 LICS, P267
[10]  
Etessami K, 2001, LECT NOTES COMPUT SC, V2076, P694