Multivariate-multiple circular regression

被引:11
作者
Kim, Sungsu [1 ]
SenGupta, Ashis [2 ,3 ]
机构
[1] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA
[2] Indian Stat Inst, Appl Stat Unit, Kolkata, India
[3] Augusta Univ, Dept Biostat & Epidemiol, Augusta, GA USA
关键词
Circular regression; circular variable; mean-square error; multiple regression; multivariate regression; VON-MISES DISTRIBUTION; MODELS;
D O I
10.1080/00949655.2016.1261292
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce a fully model-based approach of studying functional relationships between a multivariate circular-dependent variable and several circular covariates, enabling inference regarding all model parameters and related prediction. Two multiple circular regression models are presented for this approach. First, for an univariate circular-dependent variable, we propose the least circular mean-square error (LCMSE) estimation method, and asymptotic properties of the LCMSE estimators and inferential methods are developed and illustrated. Second, using a simulation study, we provide some practical suggestions for model selection between the two models. An illustrative example is given using a real data set from protein structure prediction problem. Finally, a straightforward extension to the case with a multivariate-dependent circular variable is provided.
引用
收藏
页码:1277 / 1291
页数:15
相关论文
共 21 条
[1]  
[Anonymous], 2009, Thesis
[2]  
[Anonymous], 2005, MICROECONOMETRICS ME
[3]   The interrelationships of side-chain and main-chain conformations in proteins [J].
Chakrabarti, P ;
Pal, D .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2001, 76 (1-2) :1-102
[4]   Circular regression [J].
Downs, TD ;
Mardia, KV .
BIOMETRIKA, 2002, 89 (03) :683-697
[5]   REGRESSION-MODELS FOR AN ANGULAR RESPONSE [J].
FISHER, NI ;
LEE, AJ .
BIOMETRICS, 1992, 48 (03) :665-677
[6]   CIRCADIAN TIMING OF CANCER-CHEMOTHERAPY [J].
HRUSHESKY, WJM .
SCIENCE, 1985, 228 (4695) :73-75
[7]  
Hughes G, 2007, THESIS
[8]  
JAMMALAMADAKA R.S., 2001, TOPICS CIRCULAR STAT
[9]   SOME ANGULAR-LINEAR DISTRIBUTIONS AND RELATED REGRESSION-MODELS [J].
JOHNSON, RA ;
WEHRLY, TE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1978, 73 (363) :602-606
[10]  
Jones M.C., 1989, J APPL STAT, V16, P177