On the maximal eigenvalue of signless P-Laplacian matrix for a graph

被引:0
|
作者
Mei, Ying [1 ]
机构
[1] Lishui Univ, Dept Math, Lishui 323000, Peoples R China
来源
PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2 | 2009年
关键词
Eigenvalues; Closed walk; Rank of matrix; REGULARIZATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The signless P-Laplacian Qp(G) of a function f o V is given by Qp(G)f(v) = Sigma(u is an element of V,u-nu) (f(nu) + f (u))([p-1]), where the symbol t([p]) denotes a power function that preserves the sign of t, i.e. t([p]) = sign(t).vertical bar t vertical bar(p). In this paper we investigate the signless P-Laplacian matrix for a connected graph. And we present a bound of the maximal signless P-Laplacian eigenvalue and discuss the corresponding function.
引用
收藏
页码:169 / 172
页数:4
相关论文
共 50 条
  • [1] Eigenvalue bounds for the signless p-Laplacian
    Borba, Elizandro Max
    Schwerdtfeger, Uwe
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [2] The real eigenvalues of signless P-Laplacian matrix for star graph
    Yu, Guihai
    Wang, Qingwen
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 3, 2009, : 175 - 178
  • [3] On the multiplicity of the least signless Laplacian eigenvalue of a graph
    Tian, Fenglei
    Guo, Shu-Guang
    Wong, Dein
    DISCRETE MATHEMATICS, 2022, 345 (09)
  • [4] A subdivision theorem for the largest signless Laplacian eigenvalue of a graph
    Guo, Shu-Guang
    UTILITAS MATHEMATICA, 2015, 97 : 367 - 372
  • [5] Sharp bounds for the largest eigenvalue of the signless Laplacian of a graph
    Chen, Yanqing
    Wang, Ligong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (05) : 908 - 913
  • [6] A lower bound on the least signless Laplacian eigenvalue of a graph
    Guo, Shu-Guang
    Chen, Yong-Gao
    Yu, Guanglong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 448 : 217 - 221
  • [7] On the reduced signless Laplacian spectrum of a degree maximal graph
    Tam, Bit-Shun
    Wu, Shu-Hui
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (07) : 1734 - 1756
  • [8] On the Largest Eigenvalue of Signless Laplacian Matrix of Halin Graphs
    Zhu, Xiaoxin
    Wu, Yajuan
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 113 - 116
  • [9] Eigenvalue problems for the p-Laplacian
    Lê, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (05) : 1057 - 1099
  • [10] On the spread of the distance signless Laplacian matrix of a graph
    Pirzada, S.
    Haq, Mohd Abrar Ul
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2023, 15 (01) : 38 - 45