Synergistic effect of co-existence of hematite (α-Fe2O3) and magnetite (Fe3O4) nanoparticles on graphene sheet for dye adsorption

被引:66
作者
Saiphaneendra, B. [1 ]
Saxena, Tejas [1 ]
Singh, Satyapaul A. [2 ]
Madras, Giridhar [2 ]
Srivastava, Chandan [1 ]
机构
[1] Indian Inst Sci, Dept Mat Engn, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Dept Chem Engn, Bangalore 560012, Karnataka, India
关键词
Graphene oxide (GO); Hematite; Magnetite; Methylene blue adsorption; WALLED CARBON NANOTUBES; AQUEOUS-SOLUTION; REDUCED GRAPHENE; METHYLENE-BLUE; ACTIVATED CARBON; FACILE SYNTHESIS; ANODE MATERIAL; OXIDE; REMOVAL; WATER;
D O I
10.1016/j.jece.2016.11.017
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Graphene oxide (GO) functionalized with hematite (alpha-Fe2O3) and magnetite (Fe3O4) nanoparticles (rGO-Fe2O3-Fe3O4) was prepared using a facile one-step co-precipitation technique. It shows superior performance towards methylene blue (MB) adsorption for water purification, compared to GO functionalized with hematite (rGO-Fe2O3) or magnetite (rGO-Fe3O4) nanoparticles. It also shows better performance compared to a composite mixture of rGO-Fe2O3 and rGO-Fe3O4 (rGO-M). It has been postulated that the co-existence of hematite and magnetite nanoparticles on graphene sheet causes the synergistic effect towards MB adsorption. The adsorption behaviour of GO, reduced graphene oxide (rGO), rGO-Fe2O3, rGO-Fe3O4, rGO-Fe2O3-Fe3O4 and rGO-M was studied. These materials were characterized using XRD, XPS, Raman spectroscopy, TGA, TEM, VSM and BET surface area analyzer. The phases present in the as-synthesized adsorbents were identified by XRD, Raman and XPS techniques. TGA studies confirmed the strong bonding between iron oxide particles and graphene sheet. TEM characterization was used for nanoparticles morphology and size distribution studies. Kinetics of MB adsorption was well described by the pseudo second order model. Langmuir adsorption isotherm better fits the equilibrium adsorption behaviour of rGO-Fe2O3-Fe3O4 as compared to Freundlich isotherm and the maximum adsorption capacity was determined to be 72.8 +/- 2.7 mg/g. Regeneration and reusability studies performed on rGO-Fe2O3-Fe3O4 revealed that it retains more than 65% of the original adsorption capacity even after 3 cycles thus making it a potential candidate for water treatment. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:26 / 37
页数:12
相关论文
共 76 条
[1]   Removal of methylene blue from aqueous solution with self-assembled cylindrical graphene-carbon nanotube hybrid [J].
Ai, Lunhong ;
Jiang, Jing .
CHEMICAL ENGINEERING JOURNAL, 2012, 192 :156-163
[2]   Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite [J].
Ai, Lunhong ;
Zhang, Chunying ;
Chen, Zhonglan .
JOURNAL OF HAZARDOUS MATERIALS, 2011, 192 (03) :1515-1524
[3]   Solution-Gated Epitaxial Graphene as pH Sensor [J].
Ang, Priscilla Kailian ;
Chen, Wei ;
Wee, Andrew Thye Shen ;
Loh, Kian Ping .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (44) :14392-+
[4]  
[Anonymous], IEEE T SMART GRIDS
[5]  
Bhuvaneswari S, 2014, PHYS CHEM CHEM PHYS, V16, P5284, DOI 10.1039/c3cp54778g
[6]   Fabrication of magnetically separable palladium-graphene nanocomposite with unique catalytic property of hydrogenation [J].
Chandra, Sourov ;
Bag, Sourav ;
Das, Pradip ;
Bhattacharya, Dipsikha ;
Pramanik, Panchanan .
CHEMICAL PHYSICS LETTERS, 2012, 519-20 :59-63
[7]   Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal [J].
Chandra, Vimlesh ;
Park, Jaesung ;
Chun, Young ;
Lee, Jung Woo ;
Hwang, In-Chul ;
Kim, Kwang S. .
ACS NANO, 2010, 4 (07) :3979-3986
[8]   A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure [J].
Chang, Haixin ;
Sun, Zhenhua ;
Ho, Keith Yat-Fung ;
Tao, Xiaoming ;
Yan, Feng ;
Kwok, Wai-Ming ;
Zheng, Zijian .
NANOSCALE, 2011, 3 (01) :258-264
[9]   Controllable fabrication of mono-dispersed RGO-hematite nanocomposites and their enhanced wave absorption properties [J].
Chen, Dezhi ;
Wang, Guang-Sheng ;
He, Shuai ;
Liu, Jia ;
Guo, Lin ;
Cao, Mao-Sheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (19) :5996-6003
[10]   Self-Assembly and Embedding of Nanoparticles by In Situ Reduced Graphene for Preparation of a 3D Graphene/Nanoparticle Aerogel [J].
Chen, Wufeng ;
Li, Sirong ;
Chen, Chunhua ;
Yan, Lifeng .
ADVANCED MATERIALS, 2011, 23 (47) :5679-+