Exchange Coupling in a Linear Chain of Three Quantum-Dot Spin Qubits in Silicon

被引:30
作者
Chan, Kok Wai [1 ]
Sahasrabudhe, Harshad [2 ]
Huang, Wister [1 ]
Wang, Yu [2 ]
Yang, Henry C. [1 ]
Veldhorst, Menno [1 ]
Hwang, Jason C. C. [1 ]
Mohiyaddin, Fahd A. [1 ]
Hudson, Fay E. [1 ]
Itoh, Kohei M. [3 ]
Saraiva, Andre [1 ]
Morello, Andrea [1 ]
Laucht, Arne [1 ]
Rahman, Rajib [2 ,4 ]
Dzurak, Andrew S. [1 ]
机构
[1] Univ New South Wales, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
[2] Purdue Univ, Dept Elect & Comp Engn, W Lafayette, IN 47907 USA
[3] Keio Univ, Sch Fundamental Sci & Technol, Yokohama, Kanagawa 2238522, Japan
[4] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
silicon; qubit; exchange interaction; superexchange;
D O I
10.1021/acs.nanolett.0c04771
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Quantum gates between spin qubits can be implemented leveraging the natural Heisenberg exchange interaction between two electrons in contact with each other. This interaction is controllable by electrically tailoring the overlap between electronic wave functions in quantum dot systems, as long as they occupy neighboring dots. An alternative route is the exploration of superexchange-the coupling between remote spins mediated by a third idle electron that bridges the distance between quantum dots. We experimentally demonstrate direct exchange coupling and provide evidence for second neighbor mediated superexchange in a linear array of three single-electron spin qubits in silicon, inferred from the electron spin resonance frequency spectra. We confirm theoretically, through atomistic modeling, that the device geometry only allows for sizable direct exchange coupling for neighboring dots, while next-nearest neighbor coupling cannot stem from the vanishingly small tail of the electronic wave function of the remote dots, and is only possible if mediated.
引用
收藏
页码:1517 / 1522
页数:6
相关论文
共 36 条
[1]   Gate-defined quantum dots in intrinsic silicon [J].
Angus, Susan J. ;
Ferguson, Andrew J. ;
Dzurak, Andrew S. ;
Clark, Robert G. .
NANO LETTERS, 2007, 7 (07) :2051-2055
[2]  
Baart TA, 2017, NAT NANOTECHNOL, V12, P26, DOI [10.1038/nnano.2016.188, 10.1038/NNANO.2016.188]
[3]   Tunable nonlocal spin control in a coupled-quantum dot system [J].
Craig, NJ ;
Taylor, JM ;
Lester, EA ;
Marcus, CM ;
Hanson, MP ;
Gossard, AC .
SCIENCE, 2004, 304 (5670) :565-567
[4]   Device Architecture for Coupling Spin Qubits via an Intermediate Quantum State [J].
Croot, X. G. ;
Pauka, S. J. ;
Watson, J. D. ;
Gardner, G. C. ;
Fallahi, S. ;
Manfra, M. J. ;
Reilly, D. J. .
PHYSICAL REVIEW APPLIED, 2018, 10 (04)
[5]   Interplay of exchange and superexchange in triple quantum dots [J].
Deng, Kuangyin ;
Barnes, Edwin .
PHYSICAL REVIEW B, 2020, 102 (03)
[6]   Isotopically enhanced triple-quantum-dot qubit [J].
Eng, Kevin ;
Ladd, Thaddeus D. ;
Smith, Aaron ;
Borselli, Matthew G. ;
Kiselev, Andrey A. ;
Fong, Bryan H. ;
Holabird, Kevin S. ;
Hazard, Thomas M. ;
Huang, Biqin ;
Deelman, Peter W. ;
Milosavljevic, Ivan ;
Schmitz, Adele E. ;
Ross, Richard S. ;
Gyure, Mark F. ;
Hunter, Andrew T. .
SCIENCE ADVANCES, 2015, 1 (04)
[7]   Mediated gates between spin qubits [J].
Fei, Jianjia ;
Zhou, Dong ;
Shim, Yun-Pil ;
Oh, Sangchul ;
Hu, Xuedong ;
Friesen, Mark .
PHYSICAL REVIEW A, 2012, 86 (06)
[8]   Interface-induced spin-orbit interaction in silicon quantum dots and prospects for scalability [J].
Ferdous, Rifat ;
Chan, Kok W. ;
Veldhorst, Menno ;
Hwang, J. C. C. ;
Yang, C. H. ;
Sahasrabudhe, Harshad ;
Klimeck, Gerhard ;
Morello, Andrea ;
Dzurak, Andrew S. ;
Rahman, Rajib .
PHYSICAL REVIEW B, 2018, 97 (24)
[9]   Quantum error correction in crossbar architectures [J].
Helsen, Jonas ;
Steudtner, Mark ;
Veldhorst, Menno ;
Wehner, Stephanie .
QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (03)
[10]   Fidelity benchmarks for two-qubit gates in silicon [J].
Huang, W. ;
Yang, C. H. ;
Chan, K. W. ;
Tanttu, T. ;
Hensen, B. ;
Leon, R. C. C. ;
Fogarty, M. A. ;
Hwang, J. C. C. ;
Hudson, F. E. ;
Itoh, K. M. ;
Morello, A. ;
Laucht, A. ;
Dzurak, A. S. .
NATURE, 2019, 569 (7757) :532-+