Automatic Selection of HPSG-Parsed Sentences for Treebank Construction

被引:0
|
作者
Marimon, Montserrat [1 ]
Bel, Nuria [2 ]
Padro, Lluis [3 ]
机构
[1] Univ Barcelona, E-08007 Barcelona, Spain
[2] Univ Pompeu Fabra, Barcelona, Spain
[3] Univ Politecn Cataluna, E-08028 Barcelona, Spain
关键词
D O I
10.1162/COLI_a_00190
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents an ensemble parse approach to detecting and selecting high-quality linguistic analyses output by a hand-crafted HPSG grammar of Spanish implemented in the LKB system. The approach uses full agreement (i.e., exact syntactic match) along with a MaxEnt parse selection model and a statistical dependency parser trained on the same data. The ultimate goal is to develop a hybrid corpus annotation methodology that combines fully automatic annotation and manual parse selection, in order to make the annotation task more efficient while maintaining high accuracy and the high degree of consistency necessary for any foreseen uses of a treebank.
引用
收藏
页码:523 / 531
页数:9
相关论文
共 15 条
  • [11] A TOOL SUPPORTING MINING BASED APPROACH SELECTION TO AUTOMATIC ONTOLOGY CONSTRUCTION
    Konys, Agnieszka
    PROCEEDINGS OF THE EUROPEAN CONFERENCE ON DATA MINING 2015 AND INTERNATIONAL CONFERENCES ON INTELLIGENT SYSTEMS AND AGENTS 2015 AND THEORY AND PRACTICE IN MODERN COMPUTING 2015, 2015, : 3 - 10
  • [12] An automatic methodology for construction of multi-classifier systems based on the combination of selection and fusion
    de Lima T.P.F.
    da Silva A.J.
    Ludermir T.B.
    de Oliveira W.R.
    Progress in Artificial Intelligence, 2014, 2 (4) : 205 - 215
  • [13] Multiple automatic base selection: Protein–ligand docking based on incremental construction without manual intervention
    Matthias Rarey
    Bernd Kramer
    Thomas Lengauer
    Journal of Computer-Aided Molecular Design, 1997, 11 : 369 - 384
  • [14] Multiple automatic base selection: Protein-ligand docking based on incremental construction without manual intervention
    Rarey, M
    Kramer, B
    Lengauer, T
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 1997, 11 (04) : 369 - 384
  • [15] Construction and Selection of the Automatic Segmentation Tools for High-Risk Clinical Tumor Volume in Brachytherapy for Cervical Cancer Based on Deep Learning
    Ma, C. Y.
    Zhang, L.
    Wang, Y.
    Jia, L. C.
    Xiong, W. Q.
    Zhang, W.
    Xu, X.
    Zhou, J.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : E643 - E643