A generalization of the simplest equation method and its application to (3+1)-dimensional KP equation and generalized Fisher equation

被引:8
作者
Zhao, Zhonglong [1 ]
Zhang, Yufeng [1 ]
Han, Zhong [1 ]
Rui, Wenjuan [1 ]
机构
[1] China Univ Min & Technol, Coll Sci, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
exact traveling-wave solutions; simplest equation method; (3+1)-dimensional KP equation; generalized Fisher equation; TRAVELING-WAVE SOLUTIONS; DE-VRIES EQUATION; NONLINEAR EVOLUTION-EQUATIONS; CONSERVATION-LAWS; BURGERS; MODEL; PDES;
D O I
10.1088/0031-8949/89/7/075201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the simplest equation method is used to construct exact traveling solutions of the (3+1)-dimensional KP equation and generalized Fisher equation. We summarize the main steps of the simplest equation method. The Bernoulli and Riccati equation are used as simplest equations. This method is straightforward and concise, and it can be applied to other nonlinear partial differential equations.
引用
收藏
页数:8
相关论文
共 33 条
[1]  
Adem AR, 2012, COMMUN NONLINEAR SCI, V17, P3465, DOI [10.1016/ja.cnsns.2012.01.010, 10.1016/j.cnsns.2012.01.010]
[2]   Exact solutions and conservation laws of Zakharov-Kuznetsov modified equal width equation with power law nonlinearity [J].
Adem, Khadijo Rashid ;
Khalique, Chaudry Masood .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (04) :1692-1702
[3]   Application of Exp-function method for (3+1)-dimensional nonlinear evolution equations [J].
Boz, Ahmet ;
Bekir, Ahmet .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (05) :1451-1456
[4]   New multiple soliton solutions to the general Burgers-Fisher equation and the Kuramoto-Sivashinsky equation [J].
Chen, HT ;
Zhang, HQ .
CHAOS SOLITONS & FRACTALS, 2004, 19 (01) :71-76
[5]   An algebraic method for finding a series of exact solutions to integrable and nonintegrable nonlinear evolution equations [J].
Fan, EG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (25) :7009-7026
[6]   Two new applications of the homogeneous balance method [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 265 (5-6) :353-357
[7]   Extended tanh-function method and its applications to nonlinear equations [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 277 (4-5) :212-218
[8]   A note on the homogeneous balance method [J].
Fan, EG ;
Zhang, HQ .
PHYSICS LETTERS A, 1998, 246 (05) :403-406
[9]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[10]   New periodic solutions for nonlinear evolution equations using Exp-function method [J].
He, Ji-Huan ;
Abdou, M. A. .
CHAOS SOLITONS & FRACTALS, 2007, 34 (05) :1421-1429