On the differential geometry of time-like curves in Minkowski spacetime

被引:15
作者
Formiga, J. B. [1 ]
Romero, C. [1 ]
机构
[1] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, Paraiba, Brazil
关键词
D O I
10.1119/1.2232644
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
We establish the Serret-Frenet equations in Minkowski spacetime and use them to give a simple proof of the fundamental theorem of curves in Minkowski spacetime. We also derive two theorems that represent Minkowskian versions of a well-known theorem of the differential geometry of curves in tridimensional Euclidean space. We discuss the general solution for torsionless paths in Minkowki spacetime. We then apply the 'four-dimensional Serret-Frenet equations to describe the motion of a charged test particle in a constant and uniform electromagnetic field. and show how the curvature and the torsions of the four-dimensional path of the particle contain information on the electromagnetic field acting on the particle. (c) 2006 American Association of Physics Teachers.
引用
收藏
页码:1012 / 1016
页数:5
相关论文
共 19 条
[1]  
BONNOR WB, 1969, TENSOR, V20, P229
[2]   Intrinsic geometry of curves and the Lorentz equation [J].
Caltenco, JH ;
Linares, R ;
López-Bonilla, JL .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2002, 52 (07) :839-842
[3]  
CARMELI M, 1965, PHYS REV, V138, P1003
[4]  
DOCARMO MP, 1976, DIFFERENTIAL GEOMETR, pCH1
[5]   MOTION OF CHARGED-PARTICLES IN HOMOGENEOUS ELECTROMAGNETIC-FIELDS [J].
HONIG, E ;
SCHUCKING, EL ;
VISHVESHWARA, CV .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (06) :774-781
[6]  
Kreyszig E, 1991, DIFFERENTIAL GEOMETR, pII
[7]  
LANCZOS C, 1970, SPACE AGES
[8]  
LANDAU LD, 1962, CLASSICAL THEORY FIE, pCH3
[9]  
LANG S, 1968, ANALYSIS, V1, P383
[10]   Charged particle in a constant electromagnetic field: Covariant solution [J].
Munoz, G .
AMERICAN JOURNAL OF PHYSICS, 1997, 65 (05) :429-433