On path bipancyclicity of hypercubes

被引:12
作者
Chen, Xie-Bin [1 ]
机构
[1] Zhangzhou Teachers Coll, Dept Math & Informat Sci, Zhangzhou 363000, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypercube; Cycle; Path; Hamiltonian path; Path bipancyclicity; Interconnection networks; TOLERANT EDGE-BIPANCYCLICITY; PRESCRIBED EDGES; HAMILTONIAN CYCLES; FAULTY EDGES;
D O I
10.1016/j.ipl.2009.02.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Assume that P is any path in a bipartite graph G of length k with 2 <= k <= h, G is said to be h-path bipancyclic if there exists a cycle C in G of every even length from 2k to |V(G)| such that P lies in C. Based on Lemma 5, the authors of [C.-H. Tsai, S.-Y.Jiang, Path bipancyclicity of hypercubes, Inform. Process. Lett. 101 (2007) 93-97] showed that the n-cube Q(n) with n >= 3 is (2n - 4)-path bipancyclicity. In this paper, counterexamples to the lemma are given, therefore, their proof fails. And we show the following result: The n-cube Q(n) with n >= 3 is (2n - 4)-path bipancyclicity but is not (2n - 2)-path bipancyclicity, moreover, and a path P of length k with 2 <= k <= 2n - 4 lies in a cycle of length 2k - 2 if and only if P contains two edges of dimension i for some i, 1 <= i <= n. We conjecture that if 2n - 4 is replaced by 2n - 3, then the above result also holds. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:594 / 598
页数:5
相关论文
共 50 条
  • [41] Fault-tolerant path embedding in folded hypercubes with both node and edge faults
    Kuo, Che-Nan
    Chou, Hsin-Hung
    Chang, Nai-Wen
    Hsieh, Sun-Yuan
    [J]. THEORETICAL COMPUTER SCIENCE, 2013, 475 : 82 - 91
  • [42] Feedback vertex set in hypercubes
    Focardi, R
    Luccio, FL
    Peleg, D
    [J]. INFORMATION PROCESSING LETTERS, 2000, 76 (1-2) : 1 - 5
  • [43] Edge precoloring extension of hypercubes
    Casselgren, Carl Johan
    Markstrom, Klas
    Pham, Lan Anh
    [J]. JOURNAL OF GRAPH THEORY, 2020, 95 (03) : 410 - 444
  • [44] Hamiltonicity of hypercubes with faulty vertices
    Chen, Xie-Bin
    [J]. INFORMATION PROCESSING LETTERS, 2016, 116 (05) : 343 - 346
  • [45] Decontamination of hypercubes by mobile agents
    Flocchini, Paola
    Huang, Miao Jun
    Luccio, Flaminia L.
    [J]. NETWORKS, 2008, 52 (03) : 167 - 178
  • [46] Structure fault tolerance of hypercubes and folded hypercubes
    Sabir, Eminjan
    Meng, Jixiang
    [J]. THEORETICAL COMPUTER SCIENCE, 2018, 711 : 44 - 55
  • [47] Many-to-many n-disjoint path covers in n-dimensional hypercubes
    Liu, Di
    Li, Jing
    [J]. INFORMATION PROCESSING LETTERS, 2010, 110 (14-15) : 580 - 584
  • [48] Hamiltonian paths in hypercubes with local traps
    Dybizbanski, Janusz
    Szepietowski, Andrzej
    [J]. INFORMATION SCIENCES, 2017, 375 : 258 - 270
  • [49] Embedding rings into faulty twisted hypercubes
    Abuelrub, E
    Bettayeb, S
    [J]. COMPUTERS AND ARTIFICIAL INTELLIGENCE, 1997, 16 (04): : 425 - 441
  • [50] An optimal embedding of cycles into incomplete hypercubes
    Huang, CH
    Hsiao, JY
    Lee, RCT
    [J]. INFORMATION PROCESSING LETTERS, 1999, 72 (5-6) : 213 - 218