A human-machine adversarial scoring framework for urban perception assessment using street-view images

被引:314
作者
Yao, Yao [1 ,2 ]
Liang, Zhaotang [3 ]
Yuan, Zehao [1 ]
Liu, Penghua [4 ]
Bie, Yongpan [1 ]
Zhang, Jinbao [4 ,5 ]
Wang, Ruoyu [4 ,6 ]
Wang, Jiale [7 ]
Guan, Qingfeng [1 ]
机构
[1] China Univ Geosci, Sch Geog & Informat Engn, Wuhan, Hubei, Peoples R China
[2] Alibaba Grp, Hangzhou, Zhejiang, Peoples R China
[3] Chinese Univ Hong Kong, Inst Space & Earth Informat Sci, Hong Kong, Peoples R China
[4] Sun Yat Sen Univ, Sch Geog & Planning, Guangzhou, Guangdong, Peoples R China
[5] Tencent Technol Inc, Shenzhen, Guangdong, Peoples R China
[6] Univ Edinburgh, Sch GeoSci, Inst Geog, Edinburgh, Midlothian, Scotland
[7] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Hubei, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Street view; urban perception; deep learning; urban planning; human-machine adversarial scoring; LAND-USE; GREEN SPACES; LARGE-SCALE; ENVIRONMENT; CLASSIFICATION; HEALTH; SCENES; WORLD;
D O I
10.1080/13658816.2019.1643024
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Though global-coverage urban perception datasets have been recently created using machine learning, their efficacy in accurately assessing local urban perceptions for other countries and regions remains a problem. Here we describe a human-machine adversarial scoring framework using a methodology that incorporates deep learning and iterative feedback with recommendation scores, which allows for the rapid and cost-effective assessment of the local urban perceptions for Chinese cities. Using the state-of-the-art Fully Convolutional Network (FCN) and Random Forest (RF) algorithms, the proposed method provides perception estimations with errors less than 10%. The driving factor analysis from both the visual and urban functional aspects demonstrated its feasibility in facilitating local urban perception derivations. With high-throughput and high-accuracy scorings, the proposed human-machine adversarial framework offers an affordable and rapid solution for urban planners and researchers to conduct local urban perception assessments.
引用
收藏
页码:2363 / 2384
页数:22
相关论文
共 56 条
[1]   GOOGLE STREET VIEW: CAPTURING THE WORLD AT STREET LEVEL [J].
Anguelov, Dragomir ;
Dulong, Carole ;
Filip, Daniel ;
Frueh, Christian ;
Lafon, Stephane ;
Lyon, Richard ;
Ogale, Abhijit ;
Vincent, Luc ;
Weaver, Josh .
COMPUTER, 2010, 43 (06) :32-38
[2]  
Anokhin P.K., 2016, INT SERIES MONOGRAPH
[3]  
Ashihara Yoshinobu., 1983, AESTHETIC TOWNSCAPE
[4]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[5]  
Biau G, 2012, J MACH LEARN RES, V13, P1063
[6]   Multidimensional perception of residential environment quality and neighbourhood attachment in the urban environment [J].
Bonaiuto, M ;
Aiello, A ;
Perugini, M ;
Bonnes, M ;
Ercolani, AP .
JOURNAL OF ENVIRONMENTAL PSYCHOLOGY, 1999, 19 (04) :331-352
[7]   Complex Systems and Applied Linguistics [J].
Cameron, Lynne ;
Larsen-Freeman, Diane .
INTERNATIONAL JOURNAL OF APPLIED LINGUISTICS, 2007, 17 (02) :226-240
[8]   Use of Tencent Street View Imagery for Visual Perception of Streets [J].
Cheng, Liang ;
Chu, Sensen ;
Zong, Wenwen ;
Li, Shuyi ;
Wu, Jie ;
Li, Manchun .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2017, 6 (09)
[9]   Green spaces and General Health: Roles of mental health status, social support, and physical activity [J].
Dadvand, Payam ;
Bartoll, Xavier ;
Basagana, Xavier ;
Dalmau-Bueno, Albert ;
Martinez, David ;
Ambros, Albert ;
Cirach, Marta ;
Triguero-Mas, Margarita ;
Gascon, Mireia ;
Borrell, Carme ;
Nieuwenhuijsen, Mark J. .
ENVIRONMENT INTERNATIONAL, 2016, 91 :161-167
[10]   An Approach for Collaborative Quality Assessment of Software [J].
Dubey, Alpena ;
Muthukrishnan, Dhivya .
PROCEEDINGS OF THE 9TH INDIA SOFTWARE ENGINEERING CONFERENCE, 2016, :190-195