A kriging approach based on Aitchison geometry for the characterization of particle-size curves in heterogeneous aquifers

被引:53
作者
Menafoglio, Alessandra [1 ]
Guadagnini, Alberto [2 ,3 ]
Secchi, Piercesare [1 ]
机构
[1] Politecn Milan, MOX Dept Math, I-20133 Milan, Italy
[2] Politecn Milan, Dipartimento Ingn Civile & Ambientale, I-20133 Milan, Italy
[3] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA
关键词
Geostatistics; Compositional data; Functional data; Particle-size curves; Groundwater; Hydrogeology; STATISTICAL-ANALYSIS; FUNCTIONAL DATA; FRACTIONS; TRANSPORT;
D O I
10.1007/s00477-014-0849-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We consider the problem of predicting the spatial field of particle-size curves (PSCs) from a sample observed at a finite set of locations within an alluvial aquifer near the city of Tubingen, Germany. We interpret PSCs as cumulative distribution functions and their derivatives as probability density functions. We thus (a) embed the available data into an infinite-dimensional Hilbert Space of compositional functions endowed with the Aitchison geometry and (b) develop new geostatistical methods for the analysis of spatially dependent functional compositional data. This approach enables one to provide predictions at unsampled locations for these types of data, which are commonly available in hydrogeological applications, together with a quantification of the associated uncertainty. The proposed functional compositional kriging (FCK) predictor is tested on a one-dimensional application relying on a set of 60 PSCs collected along a 5-m deep borehole at the test site. The quality of FCK predictions of PSCs is evaluated through leave-one-out cross-validation on the available data, smoothed by means of Bernstein Polynomials. A comparison of estimates of hydraulic conductivity obtained via our FCK approach against those rendered by classical kriging of effective particle diameters (i.e., quantiles of the PSCs) is provided. Unlike traditional approaches, our method fully exploits the functional form of PSCs and enables one to project the complete information content embedded in the PSC to unsampled locations in the system.
引用
收藏
页码:1835 / 1851
页数:17
相关论文
共 56 条
[1]  
AITCHISON J, 1982, J ROY STAT SOC B, V44, P139
[2]  
Aitchison John., 1986, STAT ANAL COMPOSITIO, DOI [10.1007/978-94-009-4109-0, DOI 10.1007/978-94-009-4109-0, 10.1111/j.2517-6161.1982.tb01195.x]
[3]  
[Anonymous], 1948, ANN I HENRI POINCARE
[4]  
Babu GJ, 2002, J STAT PLAN INFER, V105, P377
[5]  
Barahona-Palomo M, 2011, HYDROGEOL J, V19, P603, DOI 10.1007/s10040-011-0706-5
[6]   Spatial connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths [J].
Bianchi, Marco ;
Zheng, Chunmiao ;
Wilson, Crystal ;
Tick, Geoffrey R. ;
Liu, Gaisheng ;
Gorelick, Steven M. .
WATER RESOURCES RESEARCH, 2011, 47
[7]  
Buchanan S, 2012, GEOPHYSICS, V77, pWB201, DOI [10.1190/geo2012-0053.1, 10.1190/GEO2012-0053.1]
[8]   A universal kriging approach for spatial functional data [J].
Caballero, William ;
Giraldo, Ramon ;
Mateu, Jorge .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2013, 27 (07) :1553-1563
[9]   Goodbye, Hazen; Hello, Kozeny-Carman [J].
Carrier, WD .
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2003, 129 (11) :1054-1056
[10]  
Chiles JP., 1999, GEOSTATISTICS MODELI