Sensitivity analysis for nonlinear generalized mixed implicit equilibrium problems with non-monotone set-valued mappings

被引:27
作者
Huang, Nan-Jing
Lan, Heng-you
Cho, Yeol Je [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
[2] Sichuan Univ Sci & Engn, Dept Math, Zigong 643000, Sichuan, Peoples R China
[3] Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
non-monotone set-valued mapping; nonlinear generalized mixed implicit equilibrium problem; variational inequality; sensitivity analysis; Wiener-Hopf equation and proximal method;
D O I
10.1016/j.cam.2005.10.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and study a new class of nonlinear generalized mixed implicit equilibrium problems with non-monotone set-valued mappings. By using Wiener-Hopf equations and the Yosida approximation notion, we prove the existence of solutions and analyze the sensitivity of solutions for this class of nonlinear generalized mixed implicit equilibrium problems in Hilbert spaces. Our results are new and extend, improve and unify some recent results in this field. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:608 / 618
页数:11
相关论文
共 20 条
[1]   Sensitivity analysis for strongly nonlinear quasi-variational inclusions [J].
Agarwal, RP ;
Cho, YJ ;
Huang, NJ .
APPLIED MATHEMATICS LETTERS, 2000, 13 (06) :19-24
[2]   Generalized monotone bifunctions and equilibrium problems [J].
Bianchi, M ;
Schaible, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 90 (01) :31-43
[3]  
Blum E., 1994, MATH STUDENT, V63, P127
[4]   SENSITIVITY ANALYSIS IN VARIATIONAL-INEQUALITIES [J].
DAFERMOS, S .
MATHEMATICS OF OPERATIONS RESEARCH, 1988, 13 (03) :421-434
[5]   Sensitivity analysis for generalized nonlinear implicit quasi-variational inclusions [J].
Ding, XP .
APPLIED MATHEMATICS LETTERS, 2004, 17 (02) :225-235
[6]  
Dong H, 2001, NONLINEAR ANAL FORUM, V6, P313
[7]  
Gao CJ, 2003, ARCH INEQUAL APPL, V1, P453
[8]   FINITE-DIMENSIONAL VARIATIONAL INEQUALITY AND NONLINEAR COMPLEMENTARITY-PROBLEMS - A SURVEY OF THEORY, ALGORITHMS AND APPLICATIONS [J].
HARKER, PT ;
PANG, JS .
MATHEMATICAL PROGRAMMING, 1990, 48 (02) :161-220
[9]  
Huang NJ, 2003, PUBL MATH-DEBRECEN, V62, P83
[10]   Auxiliary principle and iterative algorithms for generalized set-valued strongly nonlinear mixed variational-like inequalities [J].
Huang, NJ ;
Deng, CX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 256 (02) :345-359