Minimal surface computation using a finite element method on an embedded surface

被引:8
作者
Cenanovic, Mirza [1 ]
Hansbo, Peter [1 ]
Larson, Mats G. [2 ]
机构
[1] Jonkoping Univ, Dept Mech Engn, SE-55111 Jonkoping, Sweden
[2] Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden
基金
瑞典研究理事会;
关键词
mean curvature; Laplace-Beltrami operator; level set; ghost penalty stabilization; PARTIAL-DIFFERENTIAL-EQUATIONS; CURVATURE FLOW; PDES;
D O I
10.1002/nme.4892
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We suggest a finite element method for finding minimal surfaces based on computing a discrete Laplace-Beltrami operator operating on the coordinates of the surface. The surface is a discrete representation of the zero level set of a distance function using linear tetrahedral finite elements, and the finite element discretization is carried out on the piecewise planar isosurface using the shape functions from the background three-dimensional mesh used to represent the distance function. A recently suggested stabilized scheme for finite element approximation of the mean curvature vector is a crucial component of the method. Copyright (C) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:502 / 512
页数:11
相关论文
共 14 条
[1]  
[Anonymous], 1999, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science
[2]  
Botsch M., 2010, Polygon Mesh Processing
[3]   COMPUTING MINIMAL-SURFACES VIA LEVEL SET CURVATURE FLOW [J].
CHOPP, DL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 106 (01) :77-91
[4]  
Deckelnick K, 2005, ACTA NUMER, V14, P139, DOI 10.1017/S0962492904000224
[5]   UNFITTED FINITE ELEMENT METHODS USING BULK MESHES FOR SURFACE PARTIAL DIFFERENTIAL EQUATIONS [J].
Deckelnick, Klaus ;
Elliott, Charles M. ;
Ranner, Thomas .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) :2137-2162
[6]   An h-narrow band finite-element method for elliptic equations on implicit surfaces [J].
Deckelnick, Klaus ;
Dziuk, Gerhard ;
Elliott, Charles M. ;
Heine, Claus-Justus .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (02) :351-376
[7]  
DZIUK G, 1991, NUMER MATH, V58, P603
[8]   Finite element methods for surface PDEs [J].
Dziuk, Gerhard ;
Elliott, Charles M. .
ACTA NUMERICA, 2013, 22 :289-396
[9]  
Hansbo P, 2014, ARXIV E PRINTS
[10]   Finite element modeling of a linear membrane shell problem using tangential differential calculus [J].
Hansbo, Peter ;
Larson, Mats G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 270 :1-14