A meshless Galerkin method for Dirichlet problems using radial basis functions

被引:20
作者
Duan, Yong [1 ]
Tan, Yong-Ji
机构
[1] Univ Elect Sci & Technol China, Sch Appl Math, Chengdu 610054, Peoples R China
[2] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
关键词
radial basis functions; Lagrange multipliers; penalty method; Galerkin approximation; meshless;
D O I
10.1016/j.cam.2005.09.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a numerical method is given for partial differential equations, which combines the use of Lagrange multipliers with radial basis functions. It is a new method to deal with difficulties that arise in the Galerkin radial basis function approximation applied to Dirichlet (also mixed) boundary value problems. Convergence analysis results are given. Several examples show the efficiency of the method using TPS or Sobolev splines. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:394 / 401
页数:8
相关论文
共 20 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
[Anonymous], SURFACE FITTING MULT
[3]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[4]   BOUNDARY LAGRANGE MULTIPLIERS IN FINITE-ELEMENT METHODS - ERROR ANALYSIS IN NATURAL NORMS [J].
BARBOSA, HJC ;
HUGHES, TJR .
NUMERISCHE MATHEMATIK, 1992, 62 (01) :1-15
[5]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[6]  
CAI ZJ, 2003, ERROR ESTIMATE ELEME
[7]   Solving differential equations with radial basis functions: multilevel methods and smoothing [J].
Fasshauer, GE .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 11 (2-3) :139-159
[8]   Convergence order estimates of meshless collocation methods using radial basis functions [J].
Franke, C ;
Schaback, R .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1998, 8 (04) :381-399
[9]   A particle-partition of unity method for the solution of elliptic, parabolic, and hyperbolic PDEs [J].
Griebel, M ;
Schweitzer, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (03) :853-890
[10]   On unsymmetric collocation by radial basis functions [J].
Hon, YC ;
Schaback, R .
APPLIED MATHEMATICS AND COMPUTATION, 2001, 119 (2-3) :177-186