Microparticle impact calibration of the Arrayed Large-Area Dust Detectors in INterplanetary space (ALADDIN) onboard the solar power sail demonstrator IKAROS

被引:19
作者
Hirai, Takayuki [1 ]
Cole, Michael J. [2 ]
Fujii, Masayuki [3 ]
Hasegawa, Sunao [4 ]
Iwai, Takeo [5 ]
Kobayashi, Masanori [6 ]
Srama, Ralf [7 ,8 ]
Yano, Hajime [1 ,4 ,9 ]
机构
[1] Grad Univ Adv Studies, Dept Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan
[2] Univ Kent, Sch Phys Sci, Canterbury CT2 7NH, Kent, England
[3] FAM Sci Co Ltd, Moriya, Ibaraki 3020102, Japan
[4] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan
[5] Yamagata Univ, Fac Med, Yamagata 9902331, Japan
[6] Chiba Inst Technol, Planetaty Explorat Res Ctr, Narashino, Chiba 2750016, Japan
[7] Univ Stuttgart, Inst Raumfahrtsyst, D-70569 Stuttgart, Germany
[8] Baylor Univ, Waco, TX 76706 USA
[9] Japan Aerosp Explorat Agcy, JAXA Space Explorat Ctr, Sagamihara, Kanagawa 2525210, Japan
关键词
PVDF; In-situ dust detector; Microparticle impact calibration; Cosmic dust; GRAAFF ACCELERATOR; LASER IRRADIATION; SIMULATION; ABOARD; SYSTEM; VAN; INSTRUMENT; COUNTER; MISSION; ORIGIN;
D O I
10.1016/j.pss.2014.05.009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Arrayed Large-Area Dust Detectors in INterplanetary space (ALADDIN) is an array of polyvinylidene fluoride (PVDF) based dust detectors aboard the solar power sail demonstrator named IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). The total sensor area of ALADDIN (0.54 m(2)) is the world's largest among the past PVDF-based dust detectors. IKAROS was launched in May 2010 and then ALADDIN measured cosmic dust impacts for 16 months while orbiting around between 0.7 and 1.1 AU. The main scientific objective of ALADDIN is to reveal number density of >= 10-mu m-sized dust in the zodiacal cloud with much higher time-space resolution than that achieved by any past in-situ measurements. The distribution of >= 10-mu m-sized dust can be also observed mainly with the light scattering by optical instruments. This paper gives the scientific objectives, the instrumental description, and the results of microparticle impact calibration of ALADDIN conducted in ground laboratories. For the calibration tests we used Van de Graaf accelerators (VdG), two-stage light gas guns (LGG), and a nanosecond pulsed Nd:YAG laser (nsPL). Through these experiments, we obtained depolarization charge signal caused by hypervelocity impacts or laser irradiation using the flight spare of 20-mu m-thick PVDF sensor and the electronics box of ALADDIN. In the VdG experiment we accelerated iron, carbon, and silver microparticles at 1-30 km/s, while in the LGG experiment we performed to shoot 100's-mu m-sized particles of soda-lime glass and stainless steel at 3-7 km/s as single projectile. For interpolation to >= 10-mu m size, we irradiated infrared laser at the energy of 15-20 mJ directly onto the PVDF sensor. From the signal analysis, we developed a calibration law for estimation of masses of impacted dust particles. The dynamic range of ALADDIN corresponds from 9 x 10(-14) kg to 2 x 10(-10) kg (4-56 mu m in diameter at density of 2.0 g/cm(3)) at the expected impact velocity of 10 km/s at 1 AU on the IKAROS inbound orbit. It was found that ALADDIN has ability to measure spatial densities of interplanetary dust particles larger than 10 gm in size by setting the sensor threshold to an output voltage of 1 V. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 37 条
[1]   Hypervelocity impact studies using the 2 MV Van de Graaff accelerator and two-stage light gas gun of the University of Kent at Canterbury [J].
Burchell, MJ ;
Cole, MJ ;
McDonnell, JAM ;
Zarnecki, JC .
MEASUREMENT SCIENCE AND TECHNOLOGY, 1999, 10 (01) :41-50
[2]   A CIRCUMSOLAR RING OF ASTEROIDAL DUST IN RESONANT LOCK WITH THE EARTH [J].
DERMOTT, SF ;
JAYARAMAN, S ;
XU, YL ;
GUSTAFSON, BAS ;
LIOU, JC .
NATURE, 1994, 369 (6483) :719-723
[3]   ORIGIN OF THE SOLAR-SYSTEM DUST BANDS DISCOVERED BY IRAS [J].
DERMOTT, SF ;
NICHOLSON, PD ;
BURNS, JA ;
HOUCK, JR .
NATURE, 1984, 312 (5994) :505-509
[4]   ORBITAL AND PHYSICAL CHARACTERISTICS OF MICROMETEOROIDS IN THE INNER SOLAR-SYSTEM AS OBSERVED BY HELIOS-1 [J].
GRUN, E ;
PAILER, N ;
FECHTIG, H ;
KISSEL, J .
PLANETARY AND SPACE SCIENCE, 1980, 28 (03) :333-349
[5]   COLLISIONAL BALANCE OF THE METEORITIC COMPLEX [J].
GRUN, E ;
ZOOK, HA ;
FECHTIG, H ;
GIESE, RH .
ICARUS, 1985, 62 (02) :244-272
[6]   Microparticle acceleration for hypervelocity experiments by a 3.75MV Van de Graaff accelerator and a 100kV electrostatic accelerator in Japan [J].
Hasegawa, S ;
Hamabe, Y ;
Fujiwara, A ;
Yano, H ;
Sasaki, S ;
Ohashi, H ;
Kawamura, T ;
Nogami, K ;
Kobayashi, K ;
Iwai, T ;
Shibata, H .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2001, 26 (1-10) :299-308
[7]  
Hirai T., 2014, ADV SPACE RES UNPUB
[8]   TEMPORAL FLUCTUATIONS AND ANISOTROPY OF MICROMETEOROID FLUX IN EARTH-MOON SYSTEM MEASURED BY HEOS 2 [J].
HOFFMANN, HJ ;
FECHTIG, H ;
GRUN, E ;
KISSEL, J .
PLANETARY AND SPACE SCIENCE, 1975, 23 (06) :985-991
[9]   The Student Dust Counter on the New Horizons Mission [J].
Horanyi, M. ;
Hoxie, V. ;
James, D. ;
Poppe, A. ;
Bryant, C. ;
Grogan, B. ;
Lamprecht, B. ;
Mack, J. ;
Bagenal, F. ;
Batiste, S. ;
Bunch, N. ;
Chanthawanich, T. ;
Christensen, F. ;
Colgan, M. ;
Dunn, T. ;
Drake, G. ;
Fernandez, A. ;
Finley, T. ;
Holland, G. ;
Jenkins, A. ;
Krauss, C. ;
Krauss, E. ;
Krauss, O. ;
Lankton, M. ;
Mitchell, C. ;
Neeland, M. ;
Reese, T. ;
Rash, K. ;
Tate, G. ;
Vaudrin, C. ;
Westfall, J. .
SPACE SCIENCE REVIEWS, 2008, 140 (1-4) :387-402
[10]  
Kawaguchi J., 2008, INT ASTR FED 59 INT, V3, P1658