共 50 条
Transport characteristics of gas phase ozone in unsaturated porous media for in-situ chemical oxidation
被引:72
作者:
Choi, H
Lim, HN
Kim, J
Hwang, TM
Kang, JW
机构:
[1] Kwangju Inst Sci & Technol, Dept Environm Sci & Engn, Buk Gu, Kwangju 500712, South Korea
[2] Argonne Natl Lab, Div Environm Res, Argonne, IL 60439 USA
[3] Yonsei Univ, Dept Environm Engn, Wonju 222701, South Korea
关键词:
ozone transport;
unsaturated porous media;
in-situ chemical oxidation;
metal oxides;
soil organic matter;
diesel-range organics;
D O I:
10.1016/S0169-7722(01)00219-4
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Laboratory column experiments were conducted by employing various porous media to delineate the characteristics of gaseous ozone transport in the unsaturated zone under various conditions. Water content, soil organic matter (SOM), and metal oxides (MOs) were found to be the factors most influential in the fate and transport of gaseous ozone in unsaturated porous media. The migration velocity of the gaseous ozone front was inversely proportional to the MO content of the porous media. Increased water content at fixed gas flux decreased the ozone breakthrough time proportionally as a result of reduced gas pore volume (PV) in the column, and increased pore water interfered with reactions of gaseous ozone with SOM and MOs on the surface of porous media. The feasibility of in-situ ozone injection for the remediation of unsaturated soils contaminated with either phenanthrene or diesel-range organics (DROs) was investigated under various conditions. The maximum removal after 1 h of ozone injection was achieved in columns packed with baked sand, followed, in descending order, by glass beads and by sand, indicating that catalytic ozone decomposition with MOs in columns packed with baked sand enhanced hydroxyl radical formation and resulted in increased contaminant removal. Overall removal efficiency of multicomponent C-10-C-24 DROs after 14 h of ozonation was 78.7%. Ozone transport was retarded considerably because of the high ozone demand of DROs, requiring more than 6 It for the gaseous ozone to initially break through the soil column under the experimental conditions tested in this study. Overall, gaseous ozone was readily delivered and transported to remediate unsaturated soils contaminated with phenanthrene and DROs. (C) 2002 Elsevier Science B.V All rights reserved.
引用
收藏
页码:81 / 98
页数:18
相关论文
共 50 条