A speaker independent Arabic isolated spoken digits recognition system using Fuzzy Kohonen Clustering Network

被引:0
作者
Elmalek, J [1 ]
Tourki, R [1 ]
机构
[1] Fac Sci, Monastir, Tunisia
来源
ARTIFICIAL NEURAL NETS AND GENETIC ALGORITHMS | 1999年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A Fuzzy Kohonen Network, which is capable of recognizing isolated Arabic spoken number speaker independently is described. The Fuzzy Kohonen Clustering Network (FKCN) algorithm, is based on the integration of Fuzzy C-Means (FCM) and Kohonen Clustering Network (KCN). FKCN is unsupervised, non-sequential, and uses fuzzy membership values from FCM as learning rates. Simulation results clearly indicate the superiority in recognition accuracy performance of FKCN when compared to that obtained for FCM, KCN and the conventional LEG (Linde-Buzo-Gray).
引用
收藏
页码:111 / 115
页数:5
相关论文
共 20 条
[1]  
ALOTAIBI YA, 1998, IEEE POTENTIALS FEB, P23
[2]  
[Anonymous], 1988, SELF ORG ASS MEMORY
[3]  
[Anonymous], Pattern Recognition With Fuzzy Objective Function Algorithms
[4]  
BELHAJ N, 1998, 2 IMACS INT MULT CES, V4, P201
[5]   2 SOFT RELATIVES OF LEARNING VECTOR QUANTIZATION [J].
BEZDEK, JC ;
PAL, NR .
NEURAL NETWORKS, 1995, 8 (05) :729-743
[6]  
CHOC H, 1992, P 1 IEEE C FUZZ SYST
[7]  
EWWIN E, 1992, BIOL CYBERN, V67, P47
[8]  
FRITZKE B, SOME COMPETITIVE LEA
[9]  
HUNTSBERGER T, 1989, INT J GEN SYST, V16, P357
[10]  
JAMAA M, 1998, 2 IMACS INT MULT CES, V4, P348