Global superconvergence and a posteriori error estimates of the finite element method for second-order quasilinear elliptic problems

被引:6
作者
Bi, Chunjia [1 ]
Ginting, Victor [2 ]
机构
[1] Yantai Univ, Dept Math, Yantai 264005, Shandong, Peoples R China
[2] Univ Wyoming, Dept Math, Laramie, WY 82071 USA
基金
美国国家科学基金会;
关键词
Quasi-linear elliptic problems; Finite element method; Superconvergence; Postprocessing-based a posteriori error estimates; DISCONTINUOUS GALERKIN METHODS; NONMONOTONE TYPE; GRIDS;
D O I
10.1016/j.cam.2013.09.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the linear finite element approximations to the second-order quasi-linear elliptic problems. By means of an interpolation postprocessing technique, we develop the global superconvergence estimates in the H-1- and W-1,W-infinity-norms provided the weak solutions are sufficiently smooth. Based on the global superconvergent approximations, we introduce and analyze the efficient postprocessing-based a posteriori error estimators, measured by the H-1- and W(1,infinity)norms respectively. These can be used to assess the accuracy of the finite element solutions in applications. Numerical experiments are given to illustrate the global superconvergence estimates and the performance of the proposed estimators. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:78 / 90
页数:13
相关论文
共 28 条
[1]   Asymptotically exact a posteriori error estimators, Part II: General unstructured grids [J].
Bank, RE ;
Xu, JC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (06) :2313-2332
[2]   Asymptotically exact a posteriori error estimators, part I: Grids with superconvergence [J].
Bank, RE ;
Xu, JC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (06) :2294-2312
[3]  
Bergam A, 2003, NUMER MATH, V95, P599, DOI 10.1007/s00211-003-0460-2
[4]   Two-grid finite volume element method for linear and nonlinear elliptic problems [J].
Bi, Chunjia ;
Ginting, Victor .
NUMERISCHE MATHEMATIK, 2007, 108 (02) :177-198
[5]   Superconvergence of finite volume element method for a nonlinear elliptic problem [J].
Bi, Chunjia .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (01) :220-233
[6]   Finite-volume-element method for second-order quasilinear elliptic problems [J].
Bi, Chunjia ;
Ginting, Victor .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (03) :1062-1089
[7]   A residual-type a posteriori error estimate of finite volume element method for a quasi-linear elliptic problem [J].
Bi, Chunjia ;
Ginting, Victor .
NUMERISCHE MATHEMATIK, 2009, 114 (01) :107-132
[8]  
Brenner S. C., 2007, MATH THEORY FINITE E
[9]   A finite volume element method for a non-linear elliptic problem [J].
Chatzipantelidis, P ;
Ginting, V ;
Lazarov, RD .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2005, 12 (5-6) :515-546
[10]  
Chen CM, 1998, LECT NOTES PURE APPL, V196, P71