Exponential sums over Mersenne numbers

被引:23
作者
Banks, WD [1 ]
Conflitti, A
Friedlander, JB
Shparlinski, IE
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[3] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
[4] Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
关键词
exponential sums over primes; Mersenne numbers;
D O I
10.1112/S0010437X03000022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give estimates for exponential sums of the form Sigma(nless than or equal toN) Lambda(n) exp(2piiag(n)/m), where m is a positive integer, a and g are integers relatively prime to m, and Lambda is the von Mangoldt function. In particular, our results yield bounds for exponential sums of the form Sigma(pless than or equal toN) exp(2piiaM(p)/m), where M-p is the Mersenne number; M-p=2(p)-1 for any prime p. We also estimate some closely related sums, including Sigma(nless than or equal toN) mu(n) exp(2piiag(n)/m) and Sigma(nless than or equal toN) mu(2)(n) exp(2piiag(n)/m), where mu is the Mobius function.
引用
收藏
页码:15 / 30
页数:16
相关论文
共 27 条
[1]  
Baker RC, 1998, ACTA ARITH, V83, P331
[2]   On the statistical properties of Diffie-Hellman distributions [J].
Canetti, R ;
Friedlander, J ;
Konyagin, S ;
Larsen, M ;
Lieman, D ;
Shparlinski, I .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 120 (1) :23-46
[3]   On certain exponential sums and the distribution of Diffie-Hellman triples [J].
Canetti, R ;
Friedlander, J ;
Shparlinski, I .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 59 :799-812
[4]  
Davenport H., 1980, MULTIPLICATIVE NUMBE
[5]   AN UPPER BOUND FOR THE SUM SIGMA-N=A+1(A+H)F(N) FOR A CERTAIN CLASS OF FUNCTIONS F [J].
DOBROWOLSKI, E ;
WILLIAMS, KS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (01) :29-35
[6]  
Erdos P., 1999, P 5 CAN NUMB THEOR A, P87
[7]   Asymptotic sieve for primes [J].
Friedlander, J ;
Iwaniec, H .
ANNALS OF MATHEMATICS, 1998, 148 (03) :1041-1065
[8]   Period of the power generator and small values of Carmichael's function (vol 70, pg 1591, 2001) [J].
Friedlander, JB ;
Pomerance, C ;
Shparlinski, IE .
MATHEMATICS OF COMPUTATION, 2002, 71 (240) :1803-1806
[9]   Some doubly exponential sums over Zm [J].
Friedlander, JB ;
Konyagin, S ;
Shparlinski, IE .
ACTA ARITHMETICA, 2002, 105 (04) :349-370
[10]   Character sums with exponential functions [J].
Friedlander, JB ;
Hansen, J ;
Shparlinski, IE .
MATHEMATIKA, 2000, 47 (93-94) :75-85