On the convex hull of the points on multivariate modular hyperbolas

被引:0
作者
Shparlinski, Igor E. [1 ]
机构
[1] Univ New South Wales, Dept Pure Math, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Modular hyperbola; Convex hull;
D O I
10.1016/j.jnt.2016.07.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given integers a, m >= 1 with gcd(a, m) = 1 and s >= 2, let H-s(a, m) be the following set of integral points H-s(a, m) = {(x(1),..., x(s)) is an element of Z(s) : x(1) ... x(s) equivalent to a (mod m), 1 <= x(1,)..., x(s) <= m - 1} We obtain upper bounds on the number of vertices of the convex hull of H-s(a, m) . These bounds generalise those known for s = 2, although our approach is different. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 12 条
  • [1] The congruence x(1)x(2)x(3)x(4) (mod p), the equation x(1)x(2)=x(3)x(4), and mean values of character sums
    Ayyad, A
    Cochrane, T
    Zheng, ZY
    [J]. JOURNAL OF NUMBER THEORY, 1996, 59 (02) : 398 - 413
  • [2] The congruence x1x2 ≡ x3x4 (mod m) and mean values of character sums
    Cochrane, Todd
    Shi, Sanying
    [J]. JOURNAL OF NUMBER THEORY, 2010, 130 (03) : 767 - 785
  • [3] On the maximal difference between an element and its inverse in residue rings
    Ford, K
    Khan, MR
    Shparlinski, IE
    Yankov, CL
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (12) : 3463 - 3468
  • [4] GEOMETRIC PROPERTIES OF POINTS ON MODULAR HYPERBOLAS
    Ford, Kevin
    Khan, Mizan R.
    Shparlinski, Igor E.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (12) : 4177 - 4185
  • [5] THE DIVISOR PROBLEM FOR ARITHMETIC PROGRESSIONS
    FRIEDLANDER, JB
    IWANIEC, H
    [J]. ACTA ARITHMETICA, 1985, 45 (03) : 273 - 277
  • [6] Hardy G.H., 2008, An Introduction to the Theory of Numbers, VSixth
  • [7] Iwaniec H., 2004, Colloquium Publications
  • [8] On the convex closure of the graph of modular inversions
    Khan, Mizan R.
    Shparlinski, Igor E.
    Yankov, Christian L.
    [J]. EXPERIMENTAL MATHEMATICS, 2008, 17 (01) : 91 - 104
  • [9] Konyagin S. V., 2011, Moscow Journal of Combinatorics and Number Theory1, P43
  • [10] Congruences with Intervals and Subgroups Modulo a Prime
    Munsch, Marc
    Shparlinski, Igor E.
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2015, 64 (03) : 655 - 672