The effects of femoral graft placement on cartilage thickness after anterior cruciate ligament reconstruction

被引:48
作者
Okafor, Eziamaka C. [1 ]
Utturkar, Gangadhar M. [1 ]
Widmyer, Margaret R. [1 ,3 ]
Abebe, Ermias S. [4 ]
Collins, Amber T. [1 ]
Taylor, Dean C. [1 ,5 ]
Spritzer, Charles E. [2 ]
Moorman, C. T. [1 ]
Garrett, William E. [1 ,5 ]
DeFrate, Louis E. [1 ,3 ]
机构
[1] Duke Univ, Med Ctr, Duke Sports Med Ctr, Dept Orthopaed Surg, Durham, NC 27710 USA
[2] Duke Univ, Med Ctr, Dept Radiol, Durham, NC 27706 USA
[3] Duke Univ, Dept Biomed Engn, Durham, NC 27706 USA
[4] Univ Pittsburgh, Med Ctr, Dept Orthopaed, Pittsburgh, PA 15260 USA
[5] Durham VA Med Ctr, Durham, NC USA
关键词
Kinematics; MRI; Imaging; Osteoarthritis; Mechanics; ACL; 3-DIMENSIONAL JOINT KINEMATICS; VIVO IMAGING ANALYSIS; IN-VIVO; KNEE OSTEOARTHRITIS; ARTICULAR-CARTILAGE; ACL RECONSTRUCTION; TUNNEL PLACEMENT; DEFICIENCY; PROGRESSION; AUTOGRAFT;
D O I
10.1016/j.jbiomech.2013.10.003
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Altered joint motion has been thought to be a contributing factor in the long-term development of osteoarthritis after ACL reconstruction. While many studies have quantified knee kinematics after ACL injury and reconstruction, there is limited in vivo data characterizing the effects of altered knee motion on cartilage thickness distributions. Thus, the objective of this study was to compare cartilage thickness distributions in two groups of patients with ACL reconstruction: one group in which subjects received a non-anatomic reconstruction that resulted in abnormal joint motion and another group in which subjects received an anatomically placed graft that more closely restored normal knee motion. Ten patients with anatomic graft placement (mean follow-up: 20 months) and 12 patients with non-anatomic graft placement (mean follow-up: 18 months) were scanned using high-resolution MR imaging. These images were used to generate 3D mesh models of both knees of each patient. The operative and contralateral knee models were registered to each other and a grid sampling system was used to make site-specific comparisons of cartilage thickness. Patients in the non-anatomic graft placement group demonstrated a significant decrease in cartilage thickness along the medial intercondylar notch in the operative knee relative to the intact knee (8%). In the anatomic graft placement group, no significant changes were observed. These findings suggest that restoring normal knee motion after ACL injury may help to slow the progression of degeneration. Therefore, graft placement may have important implications on the development of osteoarthritis after ACL reconstruction. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:96 / 101
页数:6
相关论文
共 53 条
[1]   The effects of femoral graft placement on in vivo knee kinematics after anterior cruciate ligament reconstruction [J].
Abebe, E. S. ;
Utturkar, G. M. ;
Taylor, D. C. ;
Spritzer, C. E. ;
Kim, J. P. ;
Moorman, C. T., III ;
Garrett, W. E. ;
DeFrate, L. E. .
JOURNAL OF BIOMECHANICS, 2011, 44 (05) :924-929
[2]   The effect of femoral tunnel placement on ACL graft orientation and length during in vivo knee flexion [J].
Abebe, Ermias S. ;
Kim, Jong-Pil ;
Utturkar, Gangadhar M. ;
Taylor, Dean C. ;
Spritzer, Charles E. ;
Moorman, Claude T., III ;
Garrett, William E. ;
DeFrate, Louis E. .
JOURNAL OF BIOMECHANICS, 2011, 44 (10) :1914-1920
[3]   Femoral Tunnel Placement During Anterior Cruciate Ligament Reconstruction An In Vivo Imaging Analysis Comparing Transtibial and 2-Incision Tibial Tunnel-Independent Techniques [J].
Abebe, Ermias S. ;
Moorman, C. T., III ;
Dziedzic, T. Scott ;
Spritzer, Charles E. ;
Cothran, R. Lee ;
Taylor, Dean C. ;
Garrett, William E., Jr. ;
DeFrate, Louis E. .
AMERICAN JOURNAL OF SPORTS MEDICINE, 2009, 37 (10) :1904-1911
[4]   Atlas of individual radiographic features in osteoarthritis, revised [J].
Altman, R. D. ;
Gold, G. E. .
OSTEOARTHRITIS AND CARTILAGE, 2007, 15 :A1-A56
[5]   Quantitative MR imaging evaluation of the cartilage thickness and subchondral bone area in patients with ACL-reconstructions 7 years after surgery [J].
Andreisek, G. ;
White, L. M. ;
Sussman, M. S. ;
Kunz, M. ;
Hurtig, M. ;
Weller, I. ;
Essue, J. ;
Marks, P. ;
Eckstein, F. .
OSTEOARTHRITIS AND CARTILAGE, 2009, 17 (07) :871-878
[6]   A framework for the in vivo pathomechanics of osteoarthritis at the knee [J].
Andriacchi, TP ;
Mündermann, A ;
Smith, RL ;
Alexander, EJ ;
Dyrby, CO ;
Koo, S .
ANNALS OF BIOMEDICAL ENGINEERING, 2004, 32 (03) :447-457
[7]   In vivo cartilage contact strains in patients with lateral ankle instability [J].
Bischof, Johanna E. ;
Spritzer, Charles E. ;
Caputo, Adam M. ;
Easley, Mark E. ;
DeOrio, James K. ;
Nunley, James A., II ;
DeFrate, Louis E. .
JOURNAL OF BIOMECHANICS, 2010, 43 (13) :2561-2566
[8]   Return to Play and Future ACL Injury Risk After ACL Reconstruction in Soccer Athletes From the Multicenter Orthopaedic Outcomes Network (MOON) Group [J].
Brophy, Robert H. ;
Schmitz, Leah ;
Wright, Rick W. ;
Dunn, Warren R. ;
Parker, Richard D. ;
Andrish, Jack T. ;
McCarty, Eric C. ;
Spindler, Kurt P. .
AMERICAN JOURNAL OF SPORTS MEDICINE, 2012, 40 (11) :2517-2522
[9]   In Vivo Kinematics of the Tibiotalar Joint After Lateral Ankle Instability [J].
Caputo, Adam M. ;
Lee, Jun Y. ;
Spritzer, Chuck E. ;
Easley, Mark E. ;
DeOrio, James K. ;
Nunley, James A., II ;
DeFrate, Louis E. .
AMERICAN JOURNAL OF SPORTS MEDICINE, 2009, 37 (11) :2241-2248
[10]   Anteroposterior stability of the knee during the stance phase of gait after anterior cruciate ligament deficiency [J].
Chen, Chih-Hui ;
Li, Jing-Sheng ;
Hosseini, Ali ;
Gadikota, Hemanth R. ;
Gill, Thomas J. ;
Li, Guoan .
GAIT & POSTURE, 2012, 35 (03) :467-471