Khovanov-Seidel quiver algebras and bordered Floer homology

被引:7
作者
Auroux, Denis [1 ]
Grigsby, J. Elisenda [2 ]
Wehrli, Stephan M. [3 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
[3] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2014年 / 20卷 / 01期
基金
美国国家科学基金会;
关键词
Braids; Heegaard Floer homology; Khovanov homology; CATEGORIES; BOUNDARY; MODULES;
D O I
10.1007/s00029-012-0106-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss a relationship between Khovanov- and Heegaard Floer-type homology theories for braids. Explicitly, we define a filtration on the bordered Heegaard-Floer homology bimodule associated to the double-branched cover of a braid and show that its associated graded bimodule is equivalent to a similar bimodule defined by Khovanov and Seidel.
引用
收藏
页码:1 / 55
页数:55
相关论文
共 54 条
[41]   Heegaard!Floer homology and contact structures [J].
Ozsváth, P ;
Szabó, Z .
DUKE MATHEMATICAL JOURNAL, 2005, 129 (01) :39-61
[42]   On the Heegaard Floer homology of branched double-covers [J].
Ozsváth, P ;
Szabó, Z .
ADVANCES IN MATHEMATICS, 2005, 194 (01) :1-33
[43]  
Plamenevskaya O, 2006, MATH RES LETT, V13, P571
[44]  
ROBERTS LP, 2007, MATHGT07060741
[45]  
ROBERTS LP, 2008, MATHGT08082817
[46]   A long exact sequence for symplectic Floer cohomology [J].
Seidel, P .
TOPOLOGY, 2003, 42 (05) :1003-1063
[47]  
Seidel P, 2001, PROG MATH, V202, P65
[48]  
Seidel P., 2009, MATHSG09123932
[49]  
Seidel P, 2008, ZUR LECT ADV MATH, P1, DOI 10.4171/063
[50]   Localization for Involutions in Floer Cohomology [J].
Seidel, Paul ;
Smith, Ivan .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (06) :1464-1501