Khovanov-Seidel quiver algebras and bordered Floer homology

被引:7
作者
Auroux, Denis [1 ]
Grigsby, J. Elisenda [2 ]
Wehrli, Stephan M. [3 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
[3] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2014年 / 20卷 / 01期
基金
美国国家科学基金会;
关键词
Braids; Heegaard Floer homology; Khovanov homology; CATEGORIES; BOUNDARY; MODULES;
D O I
10.1007/s00029-012-0106-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss a relationship between Khovanov- and Heegaard Floer-type homology theories for braids. Explicitly, we define a filtration on the bordered Heegaard-Floer homology bimodule associated to the double-branched cover of a braid and show that its associated graded bimodule is equivalent to a similar bimodule defined by Khovanov and Seidel.
引用
收藏
页码:1 / 55
页数:55
相关论文
共 54 条
[11]  
Chen Y., 2006, MATHQA0610054
[12]   On the Naturality of the Spectral Sequence from Khovanov Homology to Heegaard Floer Homology [J].
Grigsby, J. Elisenda ;
Wehrli, Stephan M. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (21) :4159-+
[13]  
Grigsby JE, 2011, CONTEMP MATH, V560, P111
[14]   Khovanov homology, sutured Floer homology and annular links [J].
Grigsby, J. Elisenda ;
Wehrli, Stephan M. .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (04) :2009-2039
[15]   On the colored Jones polynomial, sutured Floer homology, and knot Floer homology [J].
Grigsby, J. Elisenda ;
Wehrli, Stephan M. .
ADVANCES IN MATHEMATICS, 2010, 223 (06) :2114-2165
[16]  
Hatcher A., 2002, Algebraic topology
[17]   Holomorphic discs and sutured manifolds [J].
Juhasz, Andras .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 :1429-1457
[18]  
Kadeishvili T. V., 1982, SOOBSHCH AKAD NAUK G, V108, P249
[19]  
Keller B., 2001, Homology Homotopy Appl., V3, P1, DOI 10.4310/HHA.2001.v3.n1.a1
[20]  
Keller B, 2006, CONTEMP MATH, V406, P67