Khovanov-Seidel quiver algebras and bordered Floer homology

被引:7
作者
Auroux, Denis [1 ]
Grigsby, J. Elisenda [2 ]
Wehrli, Stephan M. [3 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
[3] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2014年 / 20卷 / 01期
基金
美国国家科学基金会;
关键词
Braids; Heegaard Floer homology; Khovanov homology; CATEGORIES; BOUNDARY; MODULES;
D O I
10.1007/s00029-012-0106-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss a relationship between Khovanov- and Heegaard Floer-type homology theories for braids. Explicitly, we define a filtration on the bordered Heegaard-Floer homology bimodule associated to the double-branched cover of a braid and show that its associated graded bimodule is equivalent to a similar bimodule defined by Khovanov and Seidel.
引用
收藏
页码:1 / 55
页数:55
相关论文
共 54 条
[1]  
Asaeda M. M., 2004, Algebr. Geom. Topol, V4, P1177, DOI [10.2140/agt.2004.4.1177, DOI 10.2140/AGT.2004.4.1177]
[2]  
AUROUX D., 2010, J. Gokova Geom. Topol. GGT, V4, P1
[3]  
Auroux D., SUTURED KHOVAN UNPUB
[4]  
Auroux D, 2010, PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL II: INVITED LECTURES, P917
[5]   On the Spectral Sequence from Khovanov Homology to Heegaard Floer Homology [J].
Baldwin, John A. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (15) :3426-3470
[6]   Khovanov homology, open books, and tight contact structures [J].
Baldwin, John A. ;
Plamenevskaya, Olga .
ADVANCES IN MATHEMATICS, 2010, 224 (06) :2544-2582
[7]   Heegaard Floer homology and genus one, one-boundary component open books [J].
Baldwin, John A. .
JOURNAL OF TOPOLOGY, 2008, 1 (04) :963-992
[8]  
Berglund A., 2010, INFINITY ALGEBRAS HO
[9]  
Bernstein J., 1994, Lecture Notes in Mathematics, V1578
[10]  
Brundan J, 2011, MOSC MATH J, V11, P685