Regularized Bayesian Estimation of Generalized Threshold Regression Models

被引:4
作者
Greb, Friederike [1 ,2 ]
Krivobokova, Tatyana [2 ,3 ]
Munk, Axel [3 ,4 ]
von Cramon-Taubadel, Stephan [1 ]
机构
[1] Univ Gottingen, Dept Agr Econ & Rural Dev, D-37073 Gottingen, Germany
[2] Univ Gottingen, Courant Res Ctr Poverty Equ & Growth Dev Countrie, D-37073 Gottingen, Germany
[3] Univ Gottingen, Inst Math Stochast, D-37073 Gottingen, Germany
[4] Max Planck Inst Biophys Chem, D-37077 Gottingen, Germany
来源
BAYESIAN ANALYSIS | 2014年 / 9卷 / 01期
关键词
empirical Bayes; regularization; threshold identification; LIKELIHOOD-ESTIMATION; CHANGE-POINT; TIME-SERIES; AUTOREGRESSION; INFERENCE;
D O I
10.1214/13-BA850
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we discuss estimation of generalized threshold regression models in settings when the threshold parameter lacks identifiability. In particular, if estimation of the regression coefficients is associated with high uncertainty and/or the difference between regimes is small, estimators of the threshold and, hence, of the whole model can be strongly affected. A new regularized Bayesian estimator for generalized threshold regression models is proposed. We derive conditions for superiority of the new estimator over the standard likelihood one in terms of mean squared error. Simulations confirm excellent finite sample properties of the suggested estimator, especially in the critical settings. The practical relevance of our approach is illustrated by two real-data examples already analyzed in the literature.
引用
收藏
页码:171 / 196
页数:26
相关论文
共 31 条
[1]   TESTS FOR PARAMETER INSTABILITY AND STRUCTURAL-CHANGE WITH UNKNOWN CHANGE-POINT [J].
ANDREWS, DWK .
ECONOMETRICA, 1993, 61 (04) :821-856
[2]  
[Anonymous], 1977, NEW YORK
[3]  
[Anonymous], 1984, OLSHEN STONE CLASSIF, DOI 10.2307/2530946
[4]  
[Anonymous], BIOMETRIKA
[5]  
BACON DW, 1971, BIOMETRIKA, V58, P525, DOI 10.2307/2334387
[7]   APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS [J].
BRESLOW, NE ;
CLAYTON, DG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :9-25
[8]   On parameter estimation of threshold autoregressive models [J].
Ngai Hang Chan ;
Yury A. Kutoyants .
Statistical Inference for Stochastic Processes, 2012, 15 (1) :81-104
[9]   Limiting properties of the least squares estimator of a continuous threshold autoregressive model [J].
Chan, KS ;
Tsay, RS .
BIOMETRIKA, 1998, 85 (02) :413-426
[10]   MULTIPLE REGIMES AND CROSS-COUNTRY GROWTH-BEHAVIOR [J].
DURLAUF, SN ;
JOHNSON, PA .
JOURNAL OF APPLIED ECONOMETRICS, 1995, 10 (04) :365-384