A new PI optimal linear quadratic state-estimate tracker for continuous-time non-square non-minimum phase systems

被引:5
作者
Tsai, Jason Sheng-Hong [1 ]
Liao, Ying-Ting [1 ]
Ebrahimzadeh, Faezeh [1 ]
Lai, Sheng-Ying [1 ]
Su, Te-Jen [2 ,3 ]
Guo, Shu-Mei [4 ]
Shieh, Leang-San [5 ]
Tsai, Tzong-Jiy [6 ]
机构
[1] Natl Cheng Kung Univ, Dept Elect Engn, Tainan, Taiwan
[2] Natl Kaohsiung Univ Appl Sci, Dept Elect Engn, Kaohsiung, Taiwan
[3] Kaohsiung Med Univ, Grad Inst Clin Med, Kaohsiung, Taiwan
[4] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan, Taiwan
[5] Univ Houston, Dept Elect & Comp Engn, Houston, TX USA
[6] Tung Fang Design Inst, Dept Game & Toy Design, Kaohsiung, Taiwan
关键词
Optimal linear quadratic estimator; frequency shaping; PID filter; non-minimum phase system; control zeros; DISTURBANCE CANCELLATION CONTROLLERS; DESIGN; IDENTIFICATION; ZEROS; RECOVERY;
D O I
10.1080/00207721.2016.1261201
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Based on the proportional-integral-derivative (PID) filter-shaping approach, this paper presents a new proportional-plus-integral (PI) optimal linear quadratic state estimator (LQSE) for the continuous-time non-square and non-minimum phase (NMP) multivariable systems. Together with the recently developed optimal linear quadratic tracker (LQT), the proposed LQSE-based tracker is able to optimally achieve good minimum phase-like tracking performances for a non-square NMP multivariable system with unmeasurable states and arbitrary command inputs.
引用
收藏
页码:1438 / 1459
页数:22
相关论文
共 49 条
[1]  
Anderson B. D. O., 1989, OPTIMAL CONTROL LINE
[2]  
[Anonymous], 2009, MODEL PREDICTIVE CON
[3]   ZEROS OF SAMPLED SYSTEMS [J].
ASTROM, KJ ;
HAGANDER, P ;
STERNBY, J .
AUTOMATICA, 1984, 20 (01) :31-38
[4]   APPROXIMATE OUTPUT TRACKING FOR NONLINEAR NONMINIMUM-PHASE SYSTEMS WITH AN APPLICATION TO FLIGHT CONTROL [J].
BENVENUTI, L ;
DIBENEDETTO, MD ;
GRIZZLE, JW .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1994, 4 (03) :397-414
[5]   MODIFIED RECURSIVE LEAST-SQUARES ALGORITHM FOR PARAMETER-IDENTIFICATION [J].
CHEN, YM ;
WU, YC .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1992, 23 (02) :187-205
[6]  
Chu C.-C., 1984, Proceedings of the 23rd IEEE Conference on Decision and Control (Cat. No. 84CH2093-3), P1764
[7]   SELF-TUNING CONTROL OF NONMINIMUM-PHASE SYSTEMS [J].
CLARKE, DW .
AUTOMATICA, 1984, 20 (05) :501-517
[8]   ONLINE FREQUENCY-DOMAIN AND TIME-DOMAIN IDENTIFICATION OF A LINEAR-MULTIVARIABLE SYSTEM [J].
DORAISWAMI, R ;
JIANG, J ;
BALASUBRAMANIAN, R .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1986, 17 (09) :1349-1371
[9]  
Doyle J. C., 1990, FEEDBACK CONTROL ORY
[10]   A generalised optimal linear quadratic tracker with universal applications. Part 2: discrete-time systems [J].
Ebrahimzadeh, Faezeh ;
Tsai, Jason Sheng-Hong ;
Chung, Min-Ching ;
Liao, Ying Ting ;
Guo, Shu-Mei ;
Shieh, Leang-San ;
Wang, Li .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2017, 48 (02) :397-416