Cryptanalysis of RSA Variants with Primes Sharing Most Significant Bits

被引:5
作者
Cherkaoui-Semmouni, Meryem [1 ]
Nitaj, Abderrahmane [2 ]
Susilo, Willy [3 ]
Tonien, Joseph [3 ]
机构
[1] Mohammed V Univ Rabat, ENSIAS, ICES Team, Rabat, Morocco
[2] Normandie Univ, LMNO, CNRS, UNICAEN, F-14000 Caen, France
[3] Univ Wollongong, Sch Comp & Informat Technol, Inst Cybersecur & Cryptol, Wollongong, NSW, Australia
来源
INFORMATION SECURITY (ISC 2021) | 2021年 / 13118卷
关键词
RSA variants; Continued fractions; Coppersmith's method; Lattice reduction; KEY; EQUATIONS;
D O I
10.1007/978-3-030-91356-4_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider four variants of the RSA cryptosystem with an RSA modulus N = pq where the public exponent e and the private exponent d satisfy an equation of the form ed - k (p(2) - 1) (q(2) - 1) = 1. We show that, if the prime numbers p and q share most significant bits, that is, if the prime difference vertical bar p-q vertical bar is sufficiently small, then one can solve the equation for larger values of d, and factor the RSA modulus, which makes the systems insecure.
引用
收藏
页码:42 / 53
页数:12
相关论文
共 22 条
[21]   CRYPTANALYSIS OF SHORT RSA SECRET EXPONENTS [J].
WIENER, MJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (03) :553-558
[22]  
Zheng M., 2018, LECT NOTES COMPUTER, V10831