Cryptanalysis of RSA Variants with Primes Sharing Most Significant Bits

被引:5
作者
Cherkaoui-Semmouni, Meryem [1 ]
Nitaj, Abderrahmane [2 ]
Susilo, Willy [3 ]
Tonien, Joseph [3 ]
机构
[1] Mohammed V Univ Rabat, ENSIAS, ICES Team, Rabat, Morocco
[2] Normandie Univ, LMNO, CNRS, UNICAEN, F-14000 Caen, France
[3] Univ Wollongong, Sch Comp & Informat Technol, Inst Cybersecur & Cryptol, Wollongong, NSW, Australia
来源
INFORMATION SECURITY (ISC 2021) | 2021年 / 13118卷
关键词
RSA variants; Continued fractions; Coppersmith's method; Lattice reduction; KEY; EQUATIONS;
D O I
10.1007/978-3-030-91356-4_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider four variants of the RSA cryptosystem with an RSA modulus N = pq where the public exponent e and the private exponent d satisfy an equation of the form ed - k (p(2) - 1) (q(2) - 1) = 1. We show that, if the prime numbers p and q share most significant bits, that is, if the prime difference vertical bar p-q vertical bar is sufficiently small, then one can solve the equation for larger values of d, and factor the RSA modulus, which makes the systems insecure.
引用
收藏
页码:42 / 53
页数:12
相关论文
共 22 条
[1]  
[Anonymous], 2018, Lecture Notes in Computer Science
[2]  
Boneh D, 1999, LECT NOTES COMPUT SC, V1592, P1
[3]  
Boneh D., 1999, Notices Amer. Math. Soc., V46, P203
[4]  
Bunder Martin, 2016, Information Security and Privacy. 21st Australasian Conference, ACISP 2016. Proceedings: LNCS 9723, P258, DOI 10.1007/978-3-319-40367-0_16
[5]   A generalized attack on RSA type cryptosystems [J].
Bunder, Martin ;
Nitaj, Abderrahmane ;
Susilo, Willy ;
Tonien, Joseph .
THEORETICAL COMPUTER SCIENCE, 2017, 704 :74-81
[6]   An efficient probabilistic public-key cryptosystern over quadratic fields quotients [J].
Castagnos, Guilhem .
FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (03) :563-576
[7]  
Collins T., 1997, US Patent, Patent No. [5,848,159, 5848159]
[8]   Small solutions to polynomial equations, and low exponent RSA vulnerabilities [J].
Coppersmith, D .
JOURNAL OF CRYPTOLOGY, 1997, 10 (04) :233-260
[9]   Cryptanalysis of RSA with small prime difference [J].
de Weger, B .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2002, 13 (01) :17-28
[10]  
Elkamchouchi H, 2002, ICCS 2002: 8TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, P91, DOI 10.1109/ICCS.2002.1182444