Temperature-Adaptive Alternating Current Preheating of Lithium-Ion Batteries with Lithium Deposition Prevention

被引:117
作者
Ge, Hao [1 ]
Huang, Jun [1 ]
Zhang, Jianbo [1 ,2 ]
Li, Zhe [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Automot Engn, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
[2] Beijing Inst Technol, Beijing Coinnovat Ctr Elect Vehicles, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
IN-SITU; THERMAL MANAGEMENT; ELECTRON-MICROSCOPY; CELLS; VISUALIZATION; INTERCALATION; VEHICLES; GROWTH;
D O I
10.1149/2.0961602jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Alternating current (AC) is capable of heating up a lithium-ion battery efficiently before charging at low temperature. Generally, the lower the frequency of the AC current, the higher the heat generation rate. Yet at low frequency, there is a risk of lithium-ion deposition during the half cycle of charging. This study develops a temperature-adaptive, deposition-free AC preheating method. The electrochemical impedance spectroscopies (EIS) of both positive and negative electrodes are measured at different temperatures using a three-electrode lithium-ion cell. The equivalent electric circuit (EEC) models are fitted through the EIS data. The maximum permissible amplitudes of the heating current without incurring lithium deposition at different frequencies are determined at each temperature using the fitted EEC model and the lithium deposition potential. Combining the maximum permissible AC current and the heat generation rate model in the frequency domain, a multistep AC preheating method, in which the amplitude is adjusted according to the cell temperature, is developed. Using this method, the cell can be heated from -20 degrees C to 5 degrees C within 800 s at 100 Hz frequency with the multistep temperature-adaptive amplitude profile. (C) 2015 The Electrochemical Society.
引用
收藏
页码:A290 / A299
页数:10
相关论文
共 30 条
  • [1] A novel thermal management for electric and hybrid vehicles
    Alaoui, C
    Salameh, ZM
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2005, 54 (02) : 468 - 476
  • [2] Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation
    Andre, D.
    Meiler, M.
    Steiner, K.
    Wimmer, Ch
    Soczka-Guth, T.
    Sauer, D. U.
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (12) : 5334 - 5341
  • [3] In Situ Solid State 7Li NMR Observations of Lithium Metal Deposition during Overcharge in Lithium Ion Batteries
    Arai, J.
    Okada, Y.
    Sugiyama, T.
    Izuka, M.
    Gotoh, K.
    Takeda, K.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (06) : A952 - A958
  • [4] Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes
    Arora, P
    Doyle, M
    White, RE
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (10) : 3543 - 3553
  • [5] Bhattacharyya R, 2010, NAT MATER, V9, P504, DOI [10.1038/nmat2764, 10.1038/NMAT2764]
  • [6] In situ study of dendritic growth in lithium/PEO-salt/lithium cells
    Brissot, C
    Rosso, M
    Chazalviel, JN
    Baudry, P
    Lascaud, S
    [J]. ELECTROCHIMICA ACTA, 1998, 43 (10-11) : 1569 - 1574
  • [7] Chandrashekar S, 2012, NAT MATER, V11, P311, DOI [10.1038/NMAT3246, 10.1038/nmat3246]
  • [8] In Situ Detection of Lithium Plating on Graphite Electrodes by Electrochemical Calorimetry
    Downie, L. E.
    Krause, L. J.
    Burns, J. C.
    Jensen, L. D.
    Chevrier, V. L.
    Dahn, J. R.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (04) : A588 - A594
  • [9] MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL
    DOYLE, M
    FULLER, TF
    NEWMAN, J
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) : 1526 - 1533
  • [10] Hande A, 2002, IEEE POWER ELECTRONICS IN TRANSPORATION, P119