Bounds on corner entanglement in quantum critical states

被引:33
作者
Bueno, Pablo [1 ]
Witczak-Krempa, William [2 ]
机构
[1] Katholieke Univ Leuven, Inst Theoret Fys, Celestijnenlaan 200D, B-3001 Leuven, Belgium
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
TOPOLOGICAL ORDER; FIELD-THEORIES; ENTROPY;
D O I
10.1103/PhysRevB.93.045131
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The entanglement entropy in many gapless quantum systems receives a contribution from the corners in the entangling surface in 2+1d, which is characterized by a universal function a(theta) depending on the opening angle theta, and contains pertinent low energy information. For conformal field theories (CFTs), the leading expansion coefficient in the smooth limit theta -> pi yields the stress tensor two-point function coefficient C-T. Little is known about a(theta) beyond that limit. Here, we show that the next term in the smooth limit expansion contains information beyond the two- and three-point correlators of the stress tensor. We conjecture that it encodes four-point data, making it much richer. Further, we establish strong constraints on this and higher-order smooth-limit coefficients. We also show that a(theta) is lower-bounded by a nontrivial function multiplied by the central charge C-T, e.g., a(pi/2) >= (pi(2) ln 2)C-T/6. This bound for 90-degree corners is nearly saturated by all known results, including recent numerics for the interacting Wilson-Fisher quantum critical points (QCPs). A bound is also given for the Renyi entropies. We illustrate our findings using O(N) QCPs, free boson and Dirac fermion CFTs, strongly coupled holographic ones, and other models. Exact results are also given for Lifshitz quantum critical points, and for conical singularities in 3+1d.
引用
收藏
页数:13
相关论文
共 88 条
[1]   Entanglement entropy for singular surfaces in hyperscaling violating theories [J].
Alishahiha, Mohsen ;
Astaneh, Amin Faraji ;
Fonda, Piermarco ;
Omidi, Farzad .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (09)
[2]  
[Anonymous], ARXIV09072939HEPTH
[3]   Topological order and conformal quantum critical points [J].
Ardonne, E ;
Fendley, P ;
Fradkin, E .
ANNALS OF PHYSICS, 2004, 310 (02) :493-551
[4]   Bulk curves from boundary data in holography [J].
Balasubramanian, Vijay ;
Chowdhury, Borun D. ;
Czech, Bartlomiej ;
de Boer, Jan ;
Heller, Michal P. .
PHYSICAL REVIEW D, 2014, 89 (08)
[5]   On the architecture of spacetime geometry [J].
Bianchi, Eugenio ;
Myers, Robert C. .
CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (21)
[6]  
Bianchi L., ARXIV 1511 06713 HEP
[7]   Holographic GB gravity in arbitrary dimensions [J].
Buchel, Alex ;
Escobedo, Jorge ;
Myers, Robert C. ;
Paulos, Miguel F. ;
Sinha, Aninda ;
Smolkin, Michael .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (03)
[8]   Universal entanglement of singular surfaces [J].
Bueno, Pablo ;
Myers, Robert C. ;
Witczak-Krempa, William .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2016, 64 (4-5) :345-348
[9]   Universal entanglement for higher dimensional cones [J].
Bueno, Pablo ;
Myers, Robert C. .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (12) :1-24
[10]   Universal corner entanglement from twist operators [J].
Bueno, Pablo ;
Myers, Robert C. ;
Witczak-Krempa, William .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (09)