On an integrable two-dimensional special lattice with self-consistent sources

被引:1
作者
Gegenhasi
Tam, Hon-Wah
Wang, Hong-Yan
机构
[1] Acad Sinica, AMSS, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing, Peoples R China
[3] Hong Kong Baptist Univ, Dept Comp Sci, Kowloon Tong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
two-dimensional special lattice with self-consistent sources; bilinear form; Casorati determinant; bilinear Backlund transformation; Lax pair;
D O I
10.1016/S0034-4877(06)80047-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a two-dimensional special lattice with self-consistent sources which is a coupled higher-dimensional Yajima-Oikawa system. The N-soliton solutions expressed in terms of the Casorati determinants are given through Wronskian technique. ne Lax presentation for the special two-dimensional lattice with self-consistent sources is derived from bilinear Backlund transformation.
引用
收藏
页码:195 / 205
页数:11
相关论文
共 43 条
[1]   Lie algebraic approach to the construction of (2+1)-dimensional lattice-field and field integrable Hamiltonian equations [J].
Blaszak, M ;
Szum, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (01) :225-259
[2]   NONLINEAR RESONANT SCATTERING AND PLASMA INSTABILITY - AN INTEGRABLE MODEL [J].
CLAUDE, C ;
LATIFI, A ;
LEON, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (12) :3321-3330
[3]   The multisoliton solutions of the KP equation with self-consistent sources [J].
Deng, SF ;
Chen, DY ;
Zhang, DJ .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (09) :2184-2192
[4]   NONLINEAR EVOLUTIONS WITH SINGULAR DISPERSION-LAWS ASSOCIATED WITH A QUADRATIC BUNDLE [J].
DOKTOROV, EV ;
SHCHESNOVICH, VS .
PHYSICS LETTERS A, 1995, 207 (3-4) :153-158
[5]  
DOKTOROV EV, 1993, OPT ACTA, V30, P233
[6]   SOLITON-SOLUTIONS OF THE KORTEWEG-DEVRIES AND KADOMTSEV-PETVIASHVILI EQUATIONS - THE WRONSKIAN TECHNIQUE [J].
FREEMAN, NC ;
NIMMO, JJC .
PHYSICS LETTERS A, 1983, 95 (01) :1-3
[7]   On an integrable differential-difference equation with a source [J].
Gegenhasi ;
Hu, Xing-Biao .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2006, 13 (02) :183-192
[8]  
GEGENHASI, 2006, IN PRESS MATH COMPUT
[9]   SOLITON-SOLUTIONS OF THE MELNIKOV EQUATIONS [J].
HASE, Y ;
HIROTA, R ;
OHTA, Y ;
SATSUMA, J .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1989, 58 (08) :2713-2720
[10]  
Hirota R., 2004, DIRECT METHOD SOLITO, DOI [10.1017/CBO9780511543043, DOI 10.1017/CBO9780511543043]