Identification of outlying and influential data with principal components regression estimation in binary logistic regression

被引:2
|
作者
Ozkale, M. Revan [1 ]
机构
[1] Cukurova Univ, Fac Sci & Letters, Dept Stat, TR-01330 Adana, Turkey
关键词
Binary logistic regression; regression diagnostics; principal component logistic estimator; Monte Carlo simulation; Akaike's information criterion; DIAGNOSTICS;
D O I
10.1080/03610926.2019.1639749
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this study, we settle on the issue that when multicollinearity and unusual observations arise simultaneously and we straightforwardly extend leverages, Pearson residuals, delta beta and delta chi-square statistics using the principal components logistic regression (PCLR) estimator where the extensions typically take the advantage of the computation of PCLR estimator by one-step approximation. We then applied two simulation studies and a numerical example to illustrate the behavior of statistics for the PCLR estimator versus the traditional ML estimator.
引用
收藏
页码:609 / 630
页数:22
相关论文
共 50 条
  • [1] Principal Components Logistic Regression based on Robust Estimation
    Kim, Bu-Yong
    Kahng, Myung Wook
    Jang, Hea-Won
    KOREAN JOURNAL OF APPLIED STATISTICS, 2009, 22 (03) : 531 - 539
  • [2] Principal Components Regression in Logistic Model
    Kim, Bu-Yong
    Kahng, Myung Wook
    KOREAN JOURNAL OF APPLIED STATISTICS, 2008, 21 (04) : 571 - 580
  • [3] Identification of multiple influential observations in logistic regression
    Nurunnabi, A. A. M.
    Imon, A. H. M. Rahmatullah
    Nasser, M.
    JOURNAL OF APPLIED STATISTICS, 2010, 37 (10) : 1605 - 1624
  • [4] Principal Components Analysis Based Imputation for Logistic Regression
    Nguyen, Thuong H. T.
    Bao Le
    Phuc Nguyen
    Nguyen, Linh G. H. Tran Thu
    Thu Nguyen
    Nguyen, Binh T.
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE. THEORY AND APPLICATIONS, IEA/AIE 2023, PT I, 2023, 13925 : 28 - 36
  • [5] 2 GRAPHICAL DISPLAYS FOR OUTLYING AND INFLUENTIAL OBSERVATIONS IN REGRESSION
    ATKINSON, AC
    BIOMETRIKA, 1981, 68 (01) : 13 - 20
  • [6] LOGISTIC-REGRESSION FOR CORRELATED BINARY DATA
    LECESSIE, S
    VANHOUWELINGEN, JC
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1994, 43 (01) : 95 - 108
  • [7] Regression: binary logistic
    Bangdiwala, Shrikant I.
    INTERNATIONAL JOURNAL OF INJURY CONTROL AND SAFETY PROMOTION, 2018, 25 (03) : 336 - 338
  • [8] Using principal components for estimating logistic regression with high-dimensional multicollinear data
    Aguilera, AM
    Escabias, M
    Valderrama, MJ
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (08) : 1905 - 1924
  • [9] Multinomial Principal Component Logistic Regression on Shape Data
    Moghimbeygi, Meisam
    Nodehi, Anahita
    JOURNAL OF CLASSIFICATION, 2022, 39 (03) : 578 - 599
  • [10] Multinomial Principal Component Logistic Regression on Shape Data
    Meisam Moghimbeygi
    Anahita Nodehi
    Journal of Classification, 2022, 39 : 578 - 599