WEYL MODULES FOR LIE SUPERALGEBRAS

被引:7
作者
Calixto, Lucas [1 ,2 ]
Lemay, Joel [3 ]
Savage, Alistair [3 ]
机构
[1] UNICAMP IMECC, BR-13083859 Campinas, SP, Brazil
[2] Univ Fed Minas Gerais, Dept Math, Belo Horizonte, MG, Brazil
[3] Univ Ottawa, Dept Math & Stat, Ottawa, ON, Canada
基金
巴西圣保罗研究基金会; 加拿大自然科学与工程研究理事会;
关键词
Lie superalgebra; basic Lie superalgebra; Weyl module; Kac module; tensor product; ALGEBRAS;
D O I
10.1090/proc/13146
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define global and local Weyl modules for Lie superalgebras of the form g circle times A, where A is an associative commutative unital C-algebra and g is a basic Lie superalgebra or sl(n, n), n >= 2. Under some mild assumptions, we prove universality, finite-dimensionality, and tensor product decomposition properties for these modules. These properties are analogues of those of Weyl modules in the non-super setting. We also point out some features that are new in the super case.
引用
收藏
页码:3191 / 3207
页数:17
相关论文
共 22 条
[1]  
[Anonymous], 1978, Lect. Notes Math.
[2]   Current algebras and categorified quantum groups [J].
Beliakova, Anna ;
Habiro, Kazuo ;
Lauda, Aaron D. ;
Webster, Ben .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 95 :248-276
[3]   Equivariant Map Queer Lie Superalgebras [J].
Calixto, Lucas ;
Moura, Adriano ;
Savage, Alistair .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2016, 68 (02) :258-279
[4]  
Chari V., 2001, Representation Theory, V5, P191, DOI [10.1090/S1088-4165-01-00115-7, DOI 10.1090/S1088-4165-01-00115-7]
[5]   Weyl modules for the twisted loop algebras [J].
Chari, Vyjayanthi ;
Fourier, Ghislain ;
Senesi, Prasad .
JOURNAL OF ALGEBRA, 2008, 319 (12) :5016-5038
[6]   A CATEGORICAL APPROACH TO WEYL MODULES [J].
Chari, Vyjayanthi ;
Fourier, Ghislain ;
Khandai, Tanusree .
TRANSFORMATION GROUPS, 2010, 15 (03) :517-549
[7]  
Cheng S.-J., 2012, GRADUATE STUDIES MAT, V144
[8]   BOTT-BOREL-WEIL THEORY AND BERNSTEIN-GEL'FAND-GEL'FAND RECIPROCITY FOR LIE SUPERALGEBRAS [J].
Coulembier, Kevin .
TRANSFORMATION GROUPS, 2016, 21 (03) :681-723
[9]  
Eswara Rao S., 2004, Contemp. Math., V343, P243
[10]   Multi-dimensional Weyl modules and symmetric functions [J].
Feigin, B ;
Loktev, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 251 (03) :427-445