WEYL MODULES FOR LIE SUPERALGEBRAS

被引:6
作者
Calixto, Lucas [1 ,2 ]
Lemay, Joel [3 ]
Savage, Alistair [3 ]
机构
[1] UNICAMP IMECC, BR-13083859 Campinas, SP, Brazil
[2] Univ Fed Minas Gerais, Dept Math, Belo Horizonte, MG, Brazil
[3] Univ Ottawa, Dept Math & Stat, Ottawa, ON, Canada
基金
巴西圣保罗研究基金会; 加拿大自然科学与工程研究理事会;
关键词
Lie superalgebra; basic Lie superalgebra; Weyl module; Kac module; tensor product; ALGEBRAS;
D O I
10.1090/proc/13146
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define global and local Weyl modules for Lie superalgebras of the form g circle times A, where A is an associative commutative unital C-algebra and g is a basic Lie superalgebra or sl(n, n), n >= 2. Under some mild assumptions, we prove universality, finite-dimensionality, and tensor product decomposition properties for these modules. These properties are analogues of those of Weyl modules in the non-super setting. We also point out some features that are new in the super case.
引用
收藏
页码:3191 / 3207
页数:17
相关论文
共 22 条
  • [1] [Anonymous], 1978, Lect. Notes Math.
  • [2] Current algebras and categorified quantum groups
    Beliakova, Anna
    Habiro, Kazuo
    Lauda, Aaron D.
    Webster, Ben
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 95 : 248 - 276
  • [3] Equivariant Map Queer Lie Superalgebras
    Calixto, Lucas
    Moura, Adriano
    Savage, Alistair
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2016, 68 (02): : 258 - 279
  • [4] Chari V., 2001, Representation Theory, V5, P191, DOI [10.1090/S1088-4165-01-00115-7, DOI 10.1090/S1088-4165-01-00115-7]
  • [5] Weyl modules for the twisted loop algebras
    Chari, Vyjayanthi
    Fourier, Ghislain
    Senesi, Prasad
    [J]. JOURNAL OF ALGEBRA, 2008, 319 (12) : 5016 - 5038
  • [6] A CATEGORICAL APPROACH TO WEYL MODULES
    Chari, Vyjayanthi
    Fourier, Ghislain
    Khandai, Tanusree
    [J]. TRANSFORMATION GROUPS, 2010, 15 (03) : 517 - 549
  • [7] Cheng S.-J., 2012, GRADUATE STUDIES MAT, V144
  • [8] BOTT-BOREL-WEIL THEORY AND BERNSTEIN-GEL'FAND-GEL'FAND RECIPROCITY FOR LIE SUPERALGEBRAS
    Coulembier, Kevin
    [J]. TRANSFORMATION GROUPS, 2016, 21 (03) : 681 - 723
  • [9] Eswara Rao S., 2004, Contemp. Math., V343, P243
  • [10] Multi-dimensional Weyl modules and symmetric functions
    Feigin, B
    Loktev, S
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 251 (03) : 427 - 445