The moduli spaces of equivariant minimal surfaces in RH3and RH4via Higgs bundles

被引:0
作者
Loftin, John [1 ]
McIntosh, Ian [2 ]
机构
[1] Rutgers Newark, Dept Math & Comp Sci, Newark, NJ 07102 USA
[2] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
基金
芬兰科学院; 美国国家科学基金会;
关键词
Minimal surface; Character variety; Higgs bundle; HARMONIC MAPS;
D O I
10.1007/s10711-018-0395-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we introduce a definition for the moduli space of equivariant minimal immersions of the Poincare disc into a non-compact symmetric space, where the equivariance is with respect to representations of the fundamental group of a compact Riemann surface of genus at least two. We then study this moduli space for the non-compact symmetric space RHn and show how SO0(n,1)-Higgs bundles can be used to parametrise this space, making clear how the classical invariants (induced metric and second fundamental form) figure in this picture. We use this parametrisation to provide details of the moduli spaces for RH3 and RH4, and relate their structure to the structure of the corresponding Higgs bundle moduli spaces.
引用
收藏
页码:325 / 351
页数:27
相关论文
共 31 条
[1]  
Alessandrini D, ARXIV151007745
[2]  
Alessandrini D, COMMUNICATION
[3]  
Alessandrini D, ARXIV170805361
[4]  
Aparicio Arroyo M, 2009, THESIS
[5]  
Arroyo MA, 2011, ILLINOIS J MATH, V55, P1299
[6]  
Baraglia D, ARXIV170808828
[7]  
Baraglia D., 2009, THESIS
[8]   Cyclic Higgs bundles and the affine Toda equations [J].
Baraglia, David .
GEOMETRIAE DEDICATA, 2015, 174 (01) :25-42
[9]  
BOLTON J, 1992, J LOND MATH SOC, V45, P363
[10]   Relative Hitchin-Kobayashi correspondences for principal pairs [J].
Bradlow, SB ;
García-Prada, O ;
Riera, IMI .
QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 :171-208