Review Paper: A Review of the Cellular Response on Electrospun Nanofibers for Tissue Engineering

被引:233
作者
Nisbet, D. R. [1 ,2 ]
Forsythe, J. S. [1 ,2 ]
Shen, W. [3 ]
Finkelstein, D. I. [4 ]
Horne, M. K. [5 ]
机构
[1] Monash Univ, Dept Mat Engn, Div Biol Engn, Clayton, Vic 3800, Australia
[2] CRC Polymers, Notting Hill, Vic 3168, Australia
[3] Monash Univ, Dept Chem Engn, Australian Pulp & Paper Inst, Clayton, Vic 3800, Australia
[4] Mental Hlth Res Inst Victoria, Parkville, Vic 3052, Australia
[5] Univ Melbourne, Howard Florey Inst, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
electrospinning; neural tissue engineering; regenerative medicine; cellular interaction; bone; cartilage; vascular tissue; POLY-EPSILON-CAPROLACTONE; MESENCHYMAL STEM-CELLS; IN-VITRO; MECHANICAL-PROPERTIES; EXTRACELLULAR-MATRIX; ENDOTHELIAL-CELLS; GROWTH-FACTOR; VASCULAR GRAFT; SCAFFOLDS; COLLAGEN;
D O I
10.1177/0885328208099086
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Electrospinning has been employed extensively in tissue engineering to generate nanofibrous scaffolds from either natural or synthetic biodegradable polymers to simulate the cellular microenvironment. Electrospinning rapidly produces fibers of the nanolength scale and the process offers many opportunities to tailor the physical, chemical, and biological properties of a material for specific applications and cellular environments. There is growing evidence that nanofibers amplify certain biological responses such as contact guidance and differentiation, however this has not been fully exploited in tissue engineering. This review addresses the cellular interactions with electrospun scaffolds, with particular focus on neural, bone, cartilage, and vascular tissue regeneration. Some aspects of scaffold design, including architectural properties, surface functionalization and materials selection are also addressed.
引用
收藏
页码:7 / 29
页数:23
相关论文
共 82 条
[41]   Potential of nanofiber matrix as tissue-engineering scaffolds [J].
Ma, ZW ;
Kotaki, M ;
Inai, R ;
Ramakrishna, S .
TISSUE ENGINEERING, 2005, 11 (1-2) :101-109
[42]   Preparation of chitosan nanofiber tube by electrospinning [J].
Matsuda, Atsushi ;
Kagata, Go ;
Kino, Rikako ;
Tanaka, Junzo .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (03) :852-855
[43]   Design strategies of tissue engineering scaffolds with controlled fiber orientation [J].
Murugan, Ramalingam ;
Ramakrishna, Seeram .
TISSUE ENGINEERING, 2007, 13 (08) :1845-1866
[44]   Characterization of neural stem cells on electrospun poly(ε-caprolactone) submicron scaffolds:: evaluating their potential in neural tissue engineering [J].
Nisbet, D. R. ;
Yu, L. M. Y. ;
Zahir, T. ;
Forsythe, J. S. ;
Shoichet, M. S. .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2008, 19 (05) :623-634
[45]   Interaction of embryonic cortical neurons on nanofibrous scaffolds for neural tissue engineering [J].
Nisbet, D. R. ;
Pattanawong, S. ;
Ritchie, N. E. ;
Shen, W. ;
Finkelstein, D. I. ;
Horne, M. K. ;
Forsythe, J. S. .
JOURNAL OF NEURAL ENGINEERING, 2007, 4 (02) :35-41
[46]   Morphology and gelation of thermosensitive xyloglucan hydrogels [J].
Nisbet, D. R. ;
Crompton, K. E. ;
Hamilton, S. D. ;
Shirakawa, S. ;
Prankerd, R. J. ;
Finkelstein, D. I. ;
Horne, M. K. ;
Forsythe, J. S. .
BIOPHYSICAL CHEMISTRY, 2006, 121 (01) :14-20
[47]   Neural tissue engineering of the CNS using hydrogels [J].
Nisbet, David R. ;
Crompton, Kylie E. ;
Horne, Malcolm K. ;
Finkelstein, David I. ;
Forsythe, John S. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2008, 87B (01) :251-263
[48]   Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells [J].
Nur-E-Kamal, Alam ;
Ahmed, Ijaz ;
Kamal, Jabeen ;
Schindler, Melvin ;
Meiners, Sally .
STEM CELLS, 2006, 24 (02) :426-433
[49]  
Rhoades R., 1996, HUMAN PHYSL
[50]  
Riesle J, 1998, J CELL BIOCHEM, V71, P313, DOI 10.1002/(SICI)1097-4644(19981201)71:3<313::AID-JCB1>3.0.CO