Gold crescent nanodisk array for nanoantenna-enhanced sensing in subwavelength areas

被引:20
作者
Zhang, Zhen [1 ]
Zhou, Bingpu [2 ]
Huang, Yingzhou [1 ]
Liao, Zhongwei [1 ]
Li, Zhipeng [3 ]
Li, Shunbo [1 ]
Wang, Shuxia [1 ]
Wen, Weijia [2 ]
机构
[1] Chongqing Univ, Soft Matter & Interdisciplinary Res Inst, Coll Phys, Chongqing 400044, Peoples R China
[2] Hong Kong Univ Sci & Technol, Nano Sci & Technol Program, Kowloon, Hong Kong, Peoples R China
[3] Capital Normal Univ, Beijing Key Lab Nanophoton & Nanostruct NPNS, Dept Phys, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL NANOPARTICLES; PLASMON; SPECTROSCOPY; SCATTERING;
D O I
10.1364/AO.53.007236
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Benefitting from the antenna effect and localized surface plasmon resonance (LSPR), a metal nanoparticle with a designed morphology has the amazing ability to confine light energy into the required extremely small volume, whose refractive index largely affects the optical properties of the whole metal nanoparticle. In this work, the optical spectra and near-field distribution of a gold nanocrescent array were investigated both experimentally and theoretically. To find out the LSPR wavelength and the enhancement using different morphologies of sharp tips, the spectra of gold nanocrescent arrays with different waist widths (d) were first measured, which were then confirmed and analyzed using the finite difference time-domain method and the hybridization theory. At last, the LSPR of this array with 100 nm diameter dielectric nanodisks was studied for sensing in subwavelength areas. Our results showed that because of its giant nanoantenna-enhanced electromagnetic field at the two tips, this gold nanocrescent array could be a suitable local senor to sense the variation of a local medium in a subwavelength area. (C) 2014 Optical Society of America.
引用
收藏
页码:7236 / 7240
页数:5
相关论文
共 28 条
[1]   Broadband plasmonic device concentrating the energy at the nanoscale: The crescent-shaped cylinder [J].
Aubry, Alexandre ;
Lei, Dang Yuan ;
Maier, Stefan A. ;
Pendry, J. B. .
PHYSICAL REVIEW B, 2010, 82 (12)
[2]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[3]   Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Laluet, JY ;
Ebbesen, TW .
NATURE, 2006, 440 (7083) :508-511
[4]   Gold nanocages: Engineering their structure for biomedical applications [J].
Chen, JY ;
Wiley, B ;
Li, ZY ;
Campbell, D ;
Saeki, F ;
Cang, H ;
Au, L ;
Lee, J ;
Li, XD ;
Xia, YN .
ADVANCED MATERIALS, 2005, 17 (18) :2255-2261
[5]   Electromagnetic field redistribution in hybridized plasmonic particle-film system [J].
Fang, Yurui ;
Huang, Yingzhou .
APPLIED PHYSICS LETTERS, 2013, 102 (15)
[6]   Branched Silver Nanowires as Controllable Plasmon Routers [J].
Fang, Yurui ;
Li, Zhipeng ;
Huang, Yingzhou ;
Zhang, Shunping ;
Nordlander, Peter ;
Halas, Naomi J. ;
Xu, Hongxing .
NANO LETTERS, 2010, 10 (05) :1950-1954
[7]   Remote Excitation of Surface-Enhanced Raman Scattering on Single Au Nanowire with Quasi-Spherical Termini [J].
Huang, Yingzhou ;
Fang, Yuri ;
Sun, Mengtao .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (09) :3558-3561
[8]  
Käll M, 2012, NAT MATER, V11, P570, DOI 10.1038/nmat3365
[9]   Indium Tin Oxide Nanoparticles with Compositionally Tunable Surface Plasmon Resonance Frequencies in the Near-IR Region [J].
Kanehara, Masayuki ;
Koike, Hayato ;
Yoshinaga, Taizo ;
Teranishi, Toshiharu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (49) :17736-17737
[10]   Shell-isolated nanoparticle-enhanced Raman spectroscopy [J].
Li, Jian Feng ;
Huang, Yi Fan ;
Ding, Yong ;
Yang, Zhi Lin ;
Li, Song Bo ;
Zhou, Xiao Shun ;
Fan, Feng Ru ;
Zhang, Wei ;
Zhou, Zhi You ;
Wu, De Yin ;
Ren, Bin ;
Wang, Zhong Lin ;
Tian, Zhong Qun .
NATURE, 2010, 464 (7287) :392-395