Cell voltage static-dynamic modeling of a PEM electrolyzer based on adaptive parameters: Development and experimental validation

被引:66
作者
Hernandez-Gomez, Angel [1 ]
Ramirez, Victor [1 ,2 ]
Guilbert, Damien [3 ]
Saldivar, Belem [2 ,4 ]
机构
[1] Ctr Invest Cient Yucatan CICY, Dept Renewable Energy, Merida, Yucatan, Mexico
[2] Catedras CONACYT, Ciudad De Mexico, Mexico
[3] Univ Lorraine, GREEN, F-54000 Nancy, France
[4] Univ Autonoma Estado Mexico UAEM, Fac Ingn, Toluca, Mexico
关键词
PEM electrolyzer; Modeling; Current ripple; Static-dynamic; Renewable energy sources; Adaptive parameters; HYDROGEN-PRODUCTION; RENEWABLE ENERGY; PHOTOVOLTAIC SYSTEM; FUEL-CELLS; DEGRADATION; TEMPERATURE; SIMULATION; PRESSURE; STORAGE;
D O I
10.1016/j.renene.2020.09.106
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This article aims to propose and experimentally validate a static-dynamic electrical model of a proton exchange membrane (PEM) electrolyzer. The originality of this work concerns the cell voltage modeling according to static and dynamic operations. Indeed, the cells of the PEM electrolyzer may be subjected to degradations due to the operating conditions and current ripple generated by power electronics. Hence, cell voltage response and efficiency may be affected. For this reason, it is crucial to model each cell voltage to investigate the degradation and wear effects mainly caused by the dynamic operating conditions met when coupling with renewable energy sources and current ripple from power electronics. To develop an accurate model, static and dynamic operations are investigated on a commercial-400 W PEM electrolyzer stack. To enhance the accuracy of the model in replicating the real behavior of the electrolyzer, the parameters of the model are adapted according to the input current. The comparison between the experimental data and the developed model has enabled confirming the effectiveness of the model to reproduce the cell voltage static and dynamic behavior according to the input current. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1508 / 1522
页数:15
相关论文
共 50 条
[1]   'Renewable' hydrogen: Prospects and challenges [J].
Abbasi, Tasneem ;
Abbasi, S. A. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (06) :3034-3040
[2]   Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell [J].
Abdin, Z. ;
Webb, C. J. ;
Gray, E. MacA .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (39) :13243-13257
[3]   Hydrogen as an energy vector [J].
Abdin, Zainul ;
Zafaranloo, Ali ;
Rafiee, Ahmad ;
Merida, Walter ;
Lipinski, Wojciech ;
Khalilpour, Kaveh R. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 120
[4]   Thermoeconomic modeling of a completely autonomous, zero-emission photovoltaic system with hydrogen storage for residential applications [J].
Arsalis, Alexandros ;
Alexandrou, Andreas N. ;
Georghiou, George E. .
RENEWABLE ENERGY, 2018, 126 :354-369
[5]   Membrane degradation in PEM water electrolyzer: Numerical modeling and experimental evidence of the influence of temperature and current density [J].
Chandesris, M. ;
Medeau, V. ;
Guillet, N. ;
Chelghoum, S. ;
Thoby, D. ;
Fouda-Onana, F. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (03) :1353-1366
[6]  
Corengia M., 2018, COMPUT AIDED CHEM EN, V44, P1435
[7]  
Coutanceau C, 2018, HYDROG FUEL CELL, P17, DOI 10.1016/B978-0-12-811250-2.00003-0
[8]   Evaluation of materials and components degradation of a PEM electrolyzer for marine applications [J].
Di Blasi, A. ;
Andaloro, L. ;
Siracusano, S. ;
Briguglio, N. ;
Brunaccini, G. ;
Stassi, A. ;
Arico, A. S. ;
Antonucci, V. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (18) :7612-7615
[9]   Impact of the current fluctuation on the efficiency of Alkaline Water Electrolysis [J].
Dobo, Zsolt ;
Palotas, Arpad Bence .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (09) :5649-5656
[10]   Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer [J].
Espinosa-Lopez, Manuel ;
Darras, Christophe ;
Poggi, Philippe ;
Glises, Raynal ;
Baucour, Philippe ;
Rakotondrainibe, Andre ;
Besse, Serge ;
Serre-Combe, Pierre .
RENEWABLE ENERGY, 2018, 119 :160-173