Soliton pair interaction law in parametrically driven Newtonian fluid

被引:32
作者
Clerc, M. G. [1 ]
Coulibaly, S. [2 ]
Mujica, N. [1 ]
Navarro, R. [1 ]
Sauma, T. [1 ]
机构
[1] Univ Chile, Dept Fis, Fac Ciencias Fis & Matemat, Santiago, Chile
[2] Univ Cocody, UFR SSMT, LACPM, Abidjan, Cote Ivoire
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2009年 / 367卷 / 1901期
关键词
dissipative soliton; pattern formation; particle-type solutions; NONLINEAR SCHRODINGER-EQUATION; QUASI-REVERSIBLE SYSTEMS; GINZBURG-LANDAU EQUATION; BIFURCATION; INSTABILITIES; FRONTS; WAVES;
D O I
10.1098/rsta.2009.0072
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An experimental and theoretical study of the motion and interaction of the localized excitations in a vertically driven small rectangular water container is reported. Close to the Faraday instability, the parametrically driven damped nonlinear Schrodinger equation models this system. This model allows one to characterize the pair interaction law between localized excitations. Experimentally we have a good agreement with the pair interaction law.
引用
收藏
页码:3213 / 3226
页数:14
相关论文
共 24 条
[1]   Impurity-induced stabilization of solitons in arrays of parametrically driven nonlinear oscillators [J].
Alexeeva, NV ;
Barashenkov, IV ;
Tsironis, GP .
PHYSICAL REVIEW LETTERS, 2000, 84 (14) :3053-3056
[2]  
[Anonymous], 1985, Solitons in mathematics and physics
[3]   Stable complexes of parametrically driven, damped nonlinear Schrodinger solitons [J].
Barashenkov, IV ;
Zemlyanaya, EV .
PHYSICAL REVIEW LETTERS, 1999, 83 (13) :2568-2571
[4]   STABILITY DIAGRAM OF THE PHASE-LOCKED SOLITONS IN THE PARAMETRICALLY DRIVEN, DAMPED NONLINEAR SCHRODINGER-EQUATION [J].
BARASHENKOV, IV ;
BOGDAN, MM ;
KOROBOV, VI .
EUROPHYSICS LETTERS, 1991, 15 (02) :113-118
[5]   The stationary instability in quasi-reversible systems and the Lorenz pendulum [J].
Clerc, M ;
Coullet, P ;
Tirapegui, E .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (03) :591-603
[6]   Lorenz bifurcation: Instabilities in quasireversible systems [J].
Clerc, M ;
Coullet, P ;
Tirapegui, E .
PHYSICAL REVIEW LETTERS, 1999, 83 (19) :3820-3823
[7]   The Maxwell-Bloch description of 1/1 resonances [J].
Clerc, M ;
Coullet, P ;
Tirapegui, E .
OPTICS COMMUNICATIONS, 1999, 167 (1-6) :159-164
[8]  
Clerc M, 2000, PROG THEOR PHYS SUPP, P337, DOI 10.1143/PTPS.139.337
[9]   Localized states beyond the asymptotic parametrically driven amplitude equation [J].
Clerc, M. G. ;
Coulibaly, S. ;
Laroze, D. .
PHYSICAL REVIEW E, 2008, 77 (05)
[10]   SHILNIKOV BIFURCATION: STATIONARY QUASI-REVERSAL BIFURCATION [J].
Clerc, Marcel G. ;
Encina, Pablo C. ;
Tirapegui, Enrique .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (07) :1905-1915