Numerical ranges of Foguel operators

被引:4
作者
Gau, Hwa-Long [1 ]
Wang, Kuo-Zhong [2 ]
Wu, Pei Yuan [2 ]
机构
[1] Natl Cent Univ, Dept Math, Chungli 32001, Taiwan
[2] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 30010, Taiwan
关键词
Numerical range; Numerical radius; Foguel operator; Foguel-Halmos operator;
D O I
10.1016/j.laa.2020.10.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study properties of the numerical ranges of Foguel operators F-T = [S* T 0 S], where Sis the simple unilateral shift and Tis some operator, both acting on l(2). Among other things, we show that (1) if Tis nonzero compact, then the numerical radius w(F-T) is strictly less than 1 +(parallel to T parallel to/2), (2) if T is a diagonal unitary operator, then root 5/2 < w(F-T) <= 3/2, and (3) if Tis a scalar operator aI, then the numerical range W(F-T) is open and is not a circular disc unless a = 0. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:766 / 784
页数:19
相关论文
共 50 条
[31]   Numerical Ranges of Radial Toeplitz Operators on Bergman Space [J].
Kuo Zhong Wang ;
Pei Yuan Wu .
Integral Equations and Operator Theory, 2009, 65
[32]   Maximal numerical ranges of certain classes of operators and approximation [J].
Dou, Rui ;
Ji, Youqing ;
Zhu, Sen .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 18 (03)
[33]   Numerical Ranges of Radial Toeplitz Operators on Bergman Space [J].
Wang, Kuo Zhong ;
Wu, Pei Yuan .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2009, 65 (04) :581-591
[34]   REDUCED MINIMAL NUMERICAL RANGES OF OPERATORS ON A HILBERT SPACE [J].
Du Hongke ;
Wang Yueqing ;
Lu Jianming .
ACTA MATHEMATICA SCIENTIA, 2009, 29 (01) :94-100
[35]   Numerical ranges of unbounded operators arising in quantum physics [J].
Bebiano, N ;
Lemos, R ;
da Providência, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 381 :259-279
[36]   ON THE NUMERICAL RANGES OF THE WEIGHTED SHIFT OPERATORS WITH GEOMETRIC AND HARMONIC WEIGHTS [J].
Vandanjav, Adiyasuren ;
Undrakh, Batzorig .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 :578-585
[37]   On generalized numerical ranges of operators on an indefinite inner product space [J].
Bebiano, N ;
Lemos, R ;
da Providência, J ;
Soares, G .
LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (3-4) :203-233
[38]   Numerical ranges for pairs of operators, duality mappings with gauge function, and spectra of nonlinear operators [J].
Appell, Juergen ;
Buica, Adriana .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2006, 3 (01) :1-13
[39]   Numerical ranges for pairs of operators, duality mappings with gauge function, and spectra of nonlinear operators [J].
Jürgen Appell ;
Adriana Buică .
Mediterranean Journal of Mathematics, 2006, 3 (1) :1-13
[40]   EXCURSIONS IN NUMERICAL RANGES [J].
Gau, Hwa-Long ;
Wu, Pei Yuan .
BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2014, 9 (03) :351-370