Numerical ranges of Foguel operators

被引:4
|
作者
Gau, Hwa-Long [1 ]
Wang, Kuo-Zhong [2 ]
Wu, Pei Yuan [2 ]
机构
[1] Natl Cent Univ, Dept Math, Chungli 32001, Taiwan
[2] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 30010, Taiwan
关键词
Numerical range; Numerical radius; Foguel operator; Foguel-Halmos operator;
D O I
10.1016/j.laa.2020.10.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study properties of the numerical ranges of Foguel operators F-T = [S* T 0 S], where Sis the simple unilateral shift and Tis some operator, both acting on l(2). Among other things, we show that (1) if Tis nonzero compact, then the numerical radius w(F-T) is strictly less than 1 +(parallel to T parallel to/2), (2) if T is a diagonal unitary operator, then root 5/2 < w(F-T) <= 3/2, and (3) if Tis a scalar operator aI, then the numerical range W(F-T) is open and is not a circular disc unless a = 0. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:766 / 784
页数:19
相关论文
共 50 条
  • [1] NUMERICAL RANGES OF SOME FOGUEL OPERATORS
    Jiang, Muyan
    Spitkovsky, Ilya M.
    OPERATORS AND MATRICES, 2023, 17 (01): : 179 - 185
  • [2] Extremality of bounds for numerical radii of Foguel operators
    Gau, Hwa-Long
    Li, Chi-Kwong
    Wang, Kuo-Zhong
    Wu, Pei Yuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (01)
  • [3] Numerical range of the Foguel-Halmos operator
    Gau, Hwa-Long
    Wang, Kuo-Zhong
    Wu, Pei Yuan
    STUDIA MATHEMATICA, 2022, 263 (03) : 267 - 292
  • [4] Numerical ranges of nilpotent operators
    Gau, Hwa-Long
    Wu, Pei Yuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (04) : 716 - 726
  • [5] Numerical Ranges of Antilinear Operators
    Kolaczek, Damian
    Muller, Vladimir
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2024, 96 (02)
  • [6] On the boundary of numerical ranges of operators
    Zhang, Hai-Yan
    Dou, Yan-Ni
    Wang, Mei-Feng
    Du, Hong-Ke
    APPLIED MATHEMATICS LETTERS, 2011, 24 (05) : 620 - 622
  • [7] NUMERICAL RANGES OF THE PRODUCT OF OPERATORS
    Du, Hongke
    Li, Chi-Kwong
    Wang, Kuo-Zhong
    Wang, Yueqing
    Zuo, Ning
    OPERATORS AND MATRICES, 2017, 11 (01): : 171 - 180
  • [8] ON OPERATORS WITH CLOSED NUMERICAL RANGES
    Ji, Youqing
    Liang, Bin
    ANNALS OF FUNCTIONAL ANALYSIS, 2018, 9 (02): : 233 - 245
  • [9] CLASS OF OPERATORS WITH SUPERIORLY CLOSED NUMERICAL RANGES
    Baghdad, Abderrahim
    Chraibi Kaadoud, Mohamed
    ADVANCES IN OPERATOR THEORY, 2019, 4 (03): : 673 - 687
  • [10] Numerical ranges of composition operators
    Matache, V
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 331 (1-3) : 61 - 74