Singularities on normal varieties

被引:53
作者
de Fernex, Tommaso [1 ]
Hacon, Christopher D. [1 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
divisorial valuation; relative canonical divisor; singularities of pairs; multiplier ideals; POSITIVE SCALAR CURVATURE; MULTIPLIER IDEAL SHEAVES; KAHLER-EINSTEIN METRICS; TIGHT CLOSURE; CANONICAL SINGULARITIES; ALGEBRAIC VARIETY; RESOLUTION; FIELD;
D O I
10.1112/S0010437X09003996
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we generalize the definitions of singularities of pairs and multiplier ideal sheaves to pairs on arbitrary normal varieties, without any assumption on the variety being Q-Gorenstein or the pair being log Q-Gorenstein. The main features of the theory extend to this setting in a natural way.
引用
收藏
页码:393 / 414
页数:22
相关论文
共 32 条
[1]  
*AM I MATH, 2006, PROBL RAIS WORKSH NU
[2]  
[Anonymous], 1998, Algebraic geometry: Hirzebruch, V70, P193
[3]  
[Anonymous], CAMBRIDGE TRACTS MAT
[4]  
[Anonymous], 1965, Inst. Hautes Etudes Sci. Publ. Math., P231, DOI 10.1007/BF02684322
[5]  
[Anonymous], 2004, ERGEBNISSE MATH IHRE
[6]  
[Anonymous], 1992, ASTERISQUE
[7]   Multiplier ideals and modules on toric varieties [J].
Blickle, M .
MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (01) :113-121
[8]   RATIONALITY OF CANONICAL SINGULARITIES [J].
ELKIK, R .
INVENTIONES MATHEMATICAE, 1981, 64 (01) :1-6
[9]   DYSON LEMMA FOR POLYNOMIALS IN SEVERAL-VARIABLES (AND THE THEOREM OF ROTH) [J].
ESNAULT, H ;
VIEHWEG, E .
INVENTIONES MATHEMATICAE, 1984, 78 (03) :445-490
[10]  
FRANCIA P, 1980, COMPOS MATH, V40, P301