Online Deep Knowledge Tracing

被引:1
作者
Zhang, Wenxin [1 ]
Zhang, Yupei
Liu, Shuhui
Shang, Xuequn
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian, Shaanxi, Peoples R China
来源
2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW | 2022年
基金
中国国家自然科学基金;
关键词
Knowledge Tracing; Online Machine Learning; RNN; Educational Data Mining; Intelligent Education;
D O I
10.1109/ICDMW58026.2022.00047
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study focuses on solving the problem of knowledge tracing in a practical situation, where the responses from students come in a stream. Most current works of deep knowledge tracing are pursuing to integrate of more side information or data structure, but they often fail to make self-update in the dynamic learning situation. Towards this end, we here proposed an online deep knowledge tracing model, dubbed ODKT, by utilizing the online gradient descent algorithm to develop the traditional deep knowledge tracing (DKT) into online learning. Rather than learning a perfect model, the ODKT aims to train DKT in its using process step by step. Experiments were conducted on four public datasets for knowledge tracing. The results demonstrate that the ODKT model is effective and more suitable for practical applications.
引用
收藏
页码:292 / 297
页数:6
相关论文
共 23 条
  • [1] Abdelrahman G., 2022, arXiv
  • [2] Badrinath A, 2021, Arxiv, DOI arXiv:2105.00385
  • [3] Context-Aware Attentive Knowledge Tracing
    Ghosh, Aritra
    Heffernan, Neil
    Lan, Andrew S.
    [J]. KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 2330 - 2339
  • [4] Hazan E., 2007, Advances in Neural Information Processing Systems, V20
  • [5] Online learning: A comprehensive survey
    Hoi, Steven C. H.
    Sahoo, Doyen
    Lu, Jing
    Zhao, Peilin
    [J]. NEUROCOMPUTING, 2021, 459 : 249 - 289
  • [6] Hoi SCH, 2014, J MACH LEARN RES, V15, P495
  • [7] Dynamic Bayesian Networks for Student Modeling
    Kaser, Tanja
    Klingler, Severin
    Schwing, Alexander G.
    Gross, Markus
    [J]. IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, 2017, 10 (04): : 450 - 462
  • [8] Kayaalp M., 2022, 2022 IEEE DATA SCI L, P1
  • [9] Liberty R., 2016, 2016 P 18 WORKSHOP A, P81, DOI DOI 10.1137/1.9781611974317.7
  • [10] Fuzzy Bayesian Knowledge Tracing
    Liu, Fei
    Hu, Xuegang
    Bu, Chenyang
    Yu, Kui
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (07) : 2412 - 2425