A NOTE ON CRITICAL POINT AND BLOW-UP RATES FOR SINGULAR AND DEGENERATE PARABOLIC EQUATIONS

被引:0
作者
Liu, B. [1 ]
Li, F. [1 ]
机构
[1] China Univ Petr, Coll Sci, Qingdao 266580, Shandong, Peoples R China
关键词
singular and degenerate parabolic equations; blow-up classification; simultaneous blow-up rates; BOUNDARY; SYSTEM; EXISTENCE; PROFILES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider singular and degenerate parabolic equations u(t) = (x(alpha)u(x))(x) + u(m)(x(0), t)v(n)(x(0), t), v(t) = (x(beta)v(x))(x) + u(q)(x(0), t)v(p)(x(0), t), in (0, a) x (0, T), subject to null Dirichlet boundary conditions, where m,n,p,q >= 0, alpha, beta is an element of[0,2) and x(0) is an element of (0, a). The optimal classification of non-simultaneous and simultaneous blow-up solutions is determined. Additionally, we obtain blow-up rates and sets for the solutions. The singular rates for the derivation of the solutions are given.
引用
收藏
页码:1195 / 1205
页数:11
相关论文
共 50 条
  • [31] Blow-up of solutions for a system of nonlocal singular viscoelastic equations
    Zarai, Abderrahmane
    Draifia, Alaeddine
    Boulaaras, Salah
    APPLICABLE ANALYSIS, 2018, 97 (13) : 2231 - 2245
  • [32] Fujita blow-up solutions for a Dirichlet problem of parabolic equations with variable coefficients
    Liu, Jiaqi
    Li, Fengjie
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (06) : 4173 - 4193
  • [33] Blow-up behavior of solutions to a degenerate parabolic-parabolic Keller-Segel system
    Ishige, Kazuhiro
    Laurencot, Philippe
    Mizoguchi, Noriko
    MATHEMATISCHE ANNALEN, 2017, 367 (1-2) : 461 - 499
  • [34] Blow-up solutions and numerical simulation for a class of quasilinear parabolic equations
    Liu, Hongwei
    Zhang, Lingling
    Liu, Tao
    APPLICABLE ANALYSIS, 2025,
  • [35] BLOW-UP OF SOLUTIONS AND EXISTENCE OF LOCAL SOLUTIONS FOR VISCOELASTIC PARABOLIC EQUATIONS
    Li, Lanlan
    Ye, Yaojun
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2022, 23 (03): : 235 - 244
  • [36] GLOBAL AND BLOW-UP SOLUTIONS FOR NONLINEAR PARABOLIC EQUATIONS WITH A GRADIENT TERM
    Ding, Juntang
    Guo, Bao-Zhu
    HOUSTON JOURNAL OF MATHEMATICS, 2011, 37 (04): : 1265 - 1277
  • [37] Blow-up analyses in parabolic equations with anisotropic nonstandard damping source
    Liu, Bingchen
    Xin, Qingna
    Dong, Mengzhen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (01) : 242 - 264
  • [38] Blow-up phenomena for a couple of parabolic equations with memory and source terms: Analytical and simulation
    Amar, Ouaoua
    JOURNAL OF MATHEMATICAL MODELING, 2025, 13 (01): : 1 - 16
  • [39] Blow-up for a nonlocal parabolic equation
    Liang Fei
    Li Yuxiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) : 3551 - 3562
  • [40] BLOW-UP RATES OF LARGE SOLUTIONS FOR SEMILINEAR ELLIPTIC EQUATIONS
    Zhang, Zhijun
    Mi, Ling
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (06) : 1733 - 1745