Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals

被引:194
作者
Borodina, Irina [1 ]
Nielsen, Jens [1 ,2 ]
机构
[1] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, Horsholm, Denmark
[2] Chalmers Univ Technol, Dept Chem & Biol Engn, SE-41296 Gothenburg, Sweden
关键词
Industrial biotechnology; Metabolic engineering; Saccharomyces cerevisiae; Synthetic biology; Yeast; PYRUVATE-DECARBOXYLASE; GENE-EXPRESSION; SUCCINIC ACID; BAKERS-YEAST; GENOME; BIOSYNTHESIS; VERSATILE; PATHWAY; GLUCOSE; GROWTH;
D O I
10.1002/biot.201300445
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology and the advances in yeast strain engineering will stimulate development of novel yeast-based processes for chemicals production.
引用
收藏
页码:609 / 620
页数:12
相关论文
共 82 条
[1]   Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production [J].
Agren, Rasmus ;
Otero, Jose Manuel ;
Nielsen, Jens .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2013, 40 (07) :735-747
[2]   The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum [J].
Agren, Rasmus ;
Liu, Liming ;
Shoaie, Saeed ;
Vongsangnak, Wanwipa ;
Nookaew, Intawat ;
Nielsen, Jens .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (03)
[3]   Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering [J].
Asadollahi, Mohammad A. ;
Maury, Jerome ;
Patil, Kiran Raosaheb ;
Schalk, Michel ;
Clark, Anthony ;
Nielsen, Jens .
METABOLIC ENGINEERING, 2009, 11 (06) :328-334
[4]   Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols [J].
Avalos, Jose L. ;
Fink, Gerald R. ;
Stephanopoulos, Gregory .
NATURE BIOTECHNOLOGY, 2013, 31 (04) :335-+
[5]   Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters [J].
Blazeck, John ;
Garg, Rishi ;
Reed, Ben ;
Alper, Hal S. .
BIOTECHNOLOGY AND BIOENGINEERING, 2012, 109 (11) :2884-2895
[6]   From genomes to in silico cells via metabolic networks [J].
Borodina, I ;
Nielsen, J .
CURRENT OPINION IN BIOTECHNOLOGY, 2005, 16 (03) :350-355
[7]   In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production [J].
Bro, C ;
Regenberg, B ;
Förster, J ;
Nielsen, J .
METABOLIC ENGINEERING, 2006, 8 (02) :102-111
[8]   Improved vanillin production in baker's yeast through in silico design [J].
Brochado, Ana Rita ;
Matos, Claudia ;
Moller, Birger L. ;
Hansen, Jorgen ;
Mortensen, Uffe H. ;
Patil, Kiran Raosaheb .
MICROBIAL CELL FACTORIES, 2010, 9
[9]   OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization [J].
Burgard, AP ;
Pharkya, P ;
Maranas, CD .
BIOTECHNOLOGY AND BIOENGINEERING, 2003, 84 (06) :647-657
[10]   Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications [J].
Curran, Kathleen A. ;
Karim, Ashty S. ;
Gupta, Akash ;
Alper, Hal S. .
METABOLIC ENGINEERING, 2013, 19 :88-97