Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals

被引:189
|
作者
Borodina, Irina [1 ]
Nielsen, Jens [1 ,2 ]
机构
[1] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, Horsholm, Denmark
[2] Chalmers Univ Technol, Dept Chem & Biol Engn, SE-41296 Gothenburg, Sweden
关键词
Industrial biotechnology; Metabolic engineering; Saccharomyces cerevisiae; Synthetic biology; Yeast; PYRUVATE-DECARBOXYLASE; GENE-EXPRESSION; SUCCINIC ACID; BAKERS-YEAST; GENOME; BIOSYNTHESIS; VERSATILE; PATHWAY; GLUCOSE; GROWTH;
D O I
10.1002/biot.201300445
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology and the advances in yeast strain engineering will stimulate development of novel yeast-based processes for chemicals production.
引用
收藏
页码:609 / 620
页数:12
相关论文
共 50 条
  • [1] Metabolic engineering of Saccharomyces cerevisiae for production of chemicals
    Borodina, Irina
    YEAST, 2015, 32 : S246 - S246
  • [2] Ethylene production by metabolic engineering of the yeast Saccharomyces cerevisiae
    Pirkov, I.
    Albers, E.
    Norbeck, J.
    Larsson, C.
    METABOLIC ENGINEERING, 2008, 10 (05) : 276 - 280
  • [3] Metabolic pathway engineering of yeast Saccharomyces cerevisiae for isobutanol production
    Ishii, Jun
    Matsuda, Fumio
    Kondo, Akihiko
    YEAST, 2013, 30 : 210 - 210
  • [4] : Metabolic engineering of the yeast Saccharomyces cerevisiae toward increase of glycerol production
    Murashchenko, Lidiia R.
    Dmytruk, Kostyantyn
    Sibirny, Andriy A.
    YEAST, 2015, 32 : S162 - S162
  • [5] Advances in the metabolic engineering of Saccharomyces cerevisiae and Yarrowia lipolytica for the production of β-carotene
    Guo, Qi
    Peng, Qian-Qian
    Li, Ya-Wen
    Yan, Fang
    Wang, Yue-Tong
    Ye, Chao
    Shi, Tian-Qiong
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 2024, 44 (03) : 337 - 351
  • [6] Advances in Metabolic Engineering of Saccharomyces cerevisiae for Cocoa Butter Equivalent Production
    Wang, Mengge
    Wei, Yongjun
    Ji, Boyang
    Nielsen, Jens
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [7] Metabolic engineering of Saccharomyces cerevisiae for the synthesis of valuable chemicals
    Wang, Shuai
    Zhao, Fengguang
    Yang, Manli
    Lin, Ying
    Han, Shuangyan
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 2024, 44 (02) : 163 - 190
  • [8] Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals
    Runguphan, Weerawat
    Keasling, Jay D.
    METABOLIC ENGINEERING, 2014, 21 : 103 - 113
  • [9] Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates
    Baptista, Sara L.
    Costa, Carlos E.
    Cunha, Joana T.
    Soares, Pedro O.
    Domingues, Lucilia
    BIOTECHNOLOGY ADVANCES, 2021, 47
  • [10] Metabolic engineering of Saccharomyces cerevisiae for pinene production
    Chen T.
    Zhang R.
    Jiang G.
    Yao M.
    Liu H.
    Wang Y.
    Xiao W.
    Yuan Y.
    Huagong Xuebao/CIESC Journal, 2019, 70 (01): : 179 - 188