Photothermal properties and photothermal conversion performance of nano-enhanced paraffin as a phase change thermal energy storage material

被引:104
|
作者
Yang, Ruitong [1 ]
Li, Dong [1 ,5 ]
Lopez Salazar, Samanta [1 ,3 ]
Rao, Zhonghao [2 ]
Arici, Muslum [1 ,4 ]
Wei, Wei [1 ]
机构
[1] Northeast Petr Univ, Sch Architecture & Civil Engn, Fazhan Lu St, Daqing 163318, Peoples R China
[2] China Univ Min & Technol, Sch Elect & Power Engn, Xuzhou 221116, Jiangsu, Peoples R China
[3] CENIDET TecNM SEP, Ctr Nacl Invest & Desarrollo Tecnol, Prol Av Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[4] Kocaeli Univ, Engn Fac, Mech Engn Dept, Umuttepe Campus, TR-41001 Kocaeli, Turkey
[5] Qingdao Univ Sci & Technol, Coll Electromech Engn, Qingdao 266061, Peoples R China
关键词
Nanoparticle; Nano-enhanced paraffin; Optical properties; Photothermal properties; Solar energy; OPTICAL-PROPERTIES; DIRECT ABSORPTION; HEAT-TRANSFER; THERMOOPTICAL PROPERTIES; SOLAR COLLECTOR; NANOFLUIDS; COMPOSITE; CARBON; WAX; NANOPARTICLES;
D O I
10.1016/j.solmat.2020.110792
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The paraffin incorporation in device of glass envelope allows the thermal regulation, increasing the thermal comfort and energy efficiency of buildings. Addition of nanoparticles has an advanced application prospect in the field of solar energy collection and storage capacity of glass envelope systems filled with paraffin. The present study conducts an experimental and numerical investigation in order to study photothermal properties of the paraffin incorporated ZnO or CuO nanoparticles. An experimental and theoretical model is also established to analyze the effect of nanoparticles on the thermophysical and optical properties of nano-enhanced paraffin. The results show that due to the presence of the nanoparticles, the transmittance of nano-enhanced paraffin decreases. On the other hand, temperature increment results in a small rise in the transmittance of nano-enhanced paraffin. The results also indicate that the utilized nanoparticles exhibit a higher attenuation to light, and the scattering effect cannot be avoided, where the maximum scattering proportion is 6.3%. Improvements of 5.87 and 13.12% in thermal conductivity of nano-enhanced paraffin at the volume fraction of 5 x 10(-4) vol% are obtained using ZnO and CuO nanoparticles, respectively. The evaluation of the photothermal performance based on the temperature variations shows that the CuO/paraffin can absorb more solar energy. The optimum photothermal performance can be satisfied by the nanoparticle volume fraction ranging from 5 x 10(-4)to 1.5 x 10(-3) vol%.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Performance evaluation of a novel nano-enhanced phase change material for thermal energy storage applications
    Daneshazarian, Reza
    Eslami, Reza
    Azizi, Nahid
    Zarrin, Hadis
    Berardi, Umberto
    JOURNAL OF ENERGY STORAGE, 2023, 74
  • [2] Thermal Performance Enhancement of CuO-Paraffin Nano-Enhanced Phase Change Material
    Singh S.
    Verma S.
    Kumar R.
    Gupta G.
    Pati P.R.
    Sharma A.
    International Journal of Vehicle Structures and Systems, 2022, 14 (03): : 411 - 416
  • [3] Studies on the thermal characteristics of nano-enhanced paraffin wax phase change material (PCM) for thermal storage applications
    Bharathiraja, R.
    Ramkumar, T.
    Selvakumar, M.
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [4] Performance Assessment of Nano-enhanced Phase Change Material for Thermal
    Daneshazarian, Reza
    Antoun, Sylvie
    Dworkin, Seth B.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 173
  • [5] Thermal properties of paraffin based nano-phase change material as thermal energy storage
    Amin, Muhammad
    Afriyanti, Fitri
    Putra, Nandy
    2ND INTERNATIONAL TROPICAL RENEWABLE ENERGY CONFERENCE (I-TREC) 2017, 2018, 105
  • [6] Improved performance of a newly prepared nano-enhanced phase change material for solar energy storage
    Harikrishnan, S.
    Hussain, S. Imran
    Devaraju, A.
    Sivasamy, P.
    Kalaiselvam, S.
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2017, 31 (10) : 4903 - 4910
  • [7] Improved performance of a newly prepared nano-enhanced phase change material for solar energy storage
    S. Harikrishnan
    S. Imran Hussain
    A. Devaraju
    P. Sivasamy
    S. Kalaiselvam
    Journal of Mechanical Science and Technology, 2017, 31 : 4903 - 4910
  • [8] Dynamic regulation of the photothermal conversion performances of nano-enhanced phase change material composited with ceramic foam subjected to external fields
    Wang, Jiajing
    Feng, Jing-Chun
    Zhuang, Yijie
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2025, 279
  • [9] Discharging Performance Analysis of MXene Nano-Enhanced Phase Change Material for Double and Triplex Tube Thermal Energy Storage
    Srivastava, Utkarsh
    Sahoo, Rashmi Rekha
    ENERGY STORAGE, 2024, 6 (07)
  • [10] Performance evaluation of nano-enhanced phase change materials for thermal energy storage: An experimental study
    Karaagac, Mehmet Onur
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 64