Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties

被引:1116
作者
Cao, Wen-Tao [1 ,2 ]
Chen, Fei-Fei [2 ]
Zhu, Ying-Jie [2 ]
Zhang, Yong-Gang [2 ]
Jiang, Ying-Ying [2 ]
Ma, Ming-Guo [1 ]
Chen, Feng [2 ,3 ]
机构
[1] Beijing Forestry Univ, Coll Mat Sci & Technol, Beijing Key Lab Lignocellulos Chem, Engn Res Ctr Forestry Biomass Mat & Bioenergy, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
[3] Tongji Univ, Shanghai Peoples Hosp 10, Sch Med, Lab Biomimet Mat & Translat Med,Dept Orthoped, Shanghai 200072, Peoples R China
基金
中国国家自然科学基金;
关键词
MXene; cellulose nanofibers; paper; mechanical properties; electromagnetic interference shielding; THERMAL-CONDUCTIVITY; FOAM COMPOSITES; GRAPHENE PAPERS; BORON-NITRIDE; PERFORMANCE; LIGHTWEIGHT; MXENE; FILMS; SUPERCAPACITORS; NANOCOMPOSITES;
D O I
10.1021/acsnano.8b00997
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the growing popularity of electrical communication equipment, high-performance electromagnetic interference (EMI) shielding materials are widely used to deal with radiation pollution. However, the large thickness and poor mechanical properties of many EMI shielding materials usually limit their applications. In this study, ultrathin and highly flexible Ti3C2Tx (d-Ti3C2Tx,, MXene)/cellulose nanofiber (CNF) composite paper with a nacre-like lamellar structure is fabricated via a vacuum-filtration-induced self-assembly process. By the interaction between one-dimensional (1D) CNFs and two-dimensional (2D) d-Ti3C2Tx MXene, the binary strengthening and toughening of the nacre-like d-Ti3C2Tx/CNF composite paper has been successfully achieved, leading to high tensile strength (up to 135.4 MPa) and fracture strain (up to 16.7%), as well as excellent folding endurance (up to 14 260 times). Moreover, the d-Ti3C2Tx/CNF composite paper exhibits high electrical conductivity (up to 739.4 S m(-1)) and excellent specific EMI shielding efficiency (up to 2647 dB cm(2) g(-1)) at an ultrathin thickness (minimum thickness 47 mu m). The nacre-inspired strategy in this study offers a promising approach for the design and preparation of the strong integrated and flexible MXene/CNF composite paper, which may be applied in various fields such as flexible wearable devices, weapon equipment, and robot joints.
引用
收藏
页码:4583 / 4593
页数:11
相关论文
共 53 条
[1]   Highly efficient electromagnetic interference shielding using graphite nanoplatelet/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) composites with enhanced thermal conductivity [J].
Agnihotri, Nidhi ;
Chakrabarti, Kuntal ;
De, Amitabha .
RSC ADVANCES, 2015, 5 (54) :43765-43771
[2]   EMI shielding effectiveness of carbon based nanostructured polymeric materials: A comparative study [J].
Al-Saleh, Mohammed H. ;
Saadeh, Walaa H. ;
Sundararaj, Uttandaraman .
CARBON, 2013, 60 :146-156
[3]   Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2TX MXene) [J].
Alhabeb, Mohamed ;
Maleski, Kathleen ;
Anasori, Babak ;
Lelyukh, Pavel ;
Clark, Leah ;
Sin, Saleesha ;
Gogotsi, Yury .
CHEMISTRY OF MATERIALS, 2017, 29 (18) :7633-7644
[4]   Lightweight Polypropylene/Stainless-Steel Fiber Composite Foams with Low Percolation for Efficient Electromagnetic Interference Shielding [J].
Ameli, Aboutaleb ;
Nofar, Mohammadreza ;
Wang, Sai ;
Park, Chul B. .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (14) :11091-11100
[5]   Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites [J].
Arjmand, Mohammad ;
Apperley, Thomas ;
Okoniewski, Michal ;
Sundararaj, Uttandaraman .
CARBON, 2012, 50 (14) :5126-5134
[6]   Pseudocapacitive Electrodes Produced by Oxidant-Free Polymerization of Pyrrole between the Layers of 2D Titanium Carbide (MXene) [J].
Boota, Muhammad ;
Anasori, Babak ;
Voigt, Cooper ;
Zhao, Meng-Qiang ;
Barsoum, Michel W. ;
Gogotsi, Yury .
ADVANCED MATERIALS, 2016, 28 (07) :1517-1522
[7]   High-Performance Epoxy Nanocomposites Reinforced with Three-Dimensional Carbon Nanotube Sponge for Electromagnetic Interference Shielding [J].
Chen, Yu ;
Zhang, Hao-Bin ;
Yang, Yanbing ;
Wang, Mu ;
Cao, Anyuan ;
Yu, Zhong-Zhen .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (03) :447-455
[8]   Comparative characteristics of TEMPO-oxidized cellulose nanofibers and resulting nanopapers from bamboo, softwood, and hardwood pulps [J].
Chen, Yufei ;
Geng, Biyao ;
Ru, Jing ;
Tong, Congcong ;
Liu, Hongzhi ;
Chen, Jinzhou .
CELLULOSE, 2017, 24 (11) :4831-4844
[9]   Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding [J].
Chen, Zongping ;
Xu, Chuan ;
Ma, Chaoqun ;
Ren, Wencai ;
Cheng, Hui-Ming .
ADVANCED MATERIALS, 2013, 25 (09) :1296-1300
[10]   Cellulose nanofiber-graphene all solid-state flexible supercapacitors [J].
Gao, Kezheng ;
Shao, Ziqiang ;
Li, Jia ;
Wang, Xi ;
Peng, Xiaoqing ;
Wang, Wenjun ;
Wang, Feijun .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (01) :63-67